1
|
Mustafa S, Meheissen MA, Moussa S, ElBackly R. Effect of ultrasonically-activated irrigation protocols used for regenerative endodontics on removal of dual species biofilm in a three-dimensionally printed tooth model: in vitro study. BMC Oral Health 2025; 25:98. [PMID: 39827346 PMCID: PMC11743002 DOI: 10.1186/s12903-024-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Eradication of residual biofilm from root canal dentine is critical for the success of regenerative endodontic procedures (REPs). THE AIM OF THE STUDY To evaluate the influence of ultrasonically activated irrigants in concentrations used for REPs for removal of dual-species biofilm from three-dimensionally printed tooth models with attached dentine samples. METHODOLOGY Seventy-two three-dimensionally printed teeth models were fabricated with a standardized slot in the apical third of the root to ensure a precise fit with a human root dentine specimen. Dual-species biofilms (comprising Enterococcus faecalis and Streptococcus mutans) were cultivated in the root canal for a period of three weeks. Models with dentine specimens were randomly assigned into 5 groups according to the irrigation protocol; G1(dis H2O): infected root canals irrigated with distilled water to serve as controls; G2(1.5% NaOCl): 1.5% NaOCl for five minutes; G3(1.5% NaOCl + PUI): 1.5% NaOCl + passive ultrasonic irrigation (PUI) for 30 s; G4(3% NaOCl): 3% NaOCl for five minutes; G5(3% NaOCl + PUI): 3% NaOCl + PUI for 30 s. Bacterial reduction was determined by colony-forming unit (CFU) counting (n = 12/G), whilst biofilms were analyzed using field emission scanning electron microscopy in additional samples. RESULTS The four experimental groups showed a significant reduction in CFU counts compared to the control group (p < 0.05). When compared with (dis H2O), the highest reduction in bacterial count was obtained in G5 (3% NaOCl + PUI) followed by G4 (3% NaOCl), then G3 (1.5% NaOCl + PUI), and finally G2 (1.5% NaOCl). CONCLUSION Results of the current study propose that a 3D-printed mature tooth model can be effectively used to analyze the antimicrobial effects of different irrigation protocols on dual-species biofilm. The use of NaOCl in concentrations used for regenerative endodontics can effectively remove bacterial biofilms. Furthermore, the use of PUI did not significantly enhance antibacterial effects of NaOCl.
Collapse
Affiliation(s)
- Saeed Mustafa
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, 13 Champolion St, Azarita, Alexandria, Egypt.
| | - Marwa A Meheissen
- Medical Microbiology &Immunology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sybel Moussa
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, 13 Champolion St, Azarita, Alexandria, Egypt
| | - Rania ElBackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, 13 Champolion St, Azarita, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Abduljalil H, Alshanta OA, Chougule S, Butcher M, Short B, McLean W, Parry N, O'Keeffe J, Ramage G. Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model. APMIS 2025; 133:e13510. [PMID: 39791268 PMCID: PMC11718591 DOI: 10.1111/apm.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model. Two lactam derivatives were tested against a panel of important fungal pathogens and then quantitatively assessed against simple and increasingly complex interkingdom biofilm models on polystyrene coverslips and a novel keratin hydrogel system. The lactams were shown to be effective against a wide range of fungal species in the planktonic and biofilm forms, with no ability to regrow. The fungal component of the multispecies biofilm models was significantly reduced with lactam treatment. Lactam treatment was also comparably effective compared to the non-prescription topical antifungal 'Lamisil' against C. albicans early and late biofilms. This study highlights the effectiveness of lactams as a novel antimicrobial for the management of the polymicrobial and interkingdom multispecies biofilms.
Collapse
Affiliation(s)
- Hafsa Abduljalil
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
| | - Om Alkhir Alshanta
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
| | - Safa Chougule
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
| | - Mark Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
- Safeguarding Health Through Infection Prevention (SHIP) Research Group, Research Centre for Health, School of Health and Life SciencesGlasgow Caledonian UniversityGlasgowUK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
| | - William McLean
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
| | - Neil Parry
- Unilever R&DBebingtonWirralUK
- Penrhos Bio LimitedLondonUK
| | | | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and NursingCollege of Medical, Veterinary and Life SciencesGlasgowUK
- Safeguarding Health Through Infection Prevention (SHIP) Research Group, Research Centre for Health, School of Health and Life SciencesGlasgow Caledonian UniversityGlasgowUK
| |
Collapse
|
3
|
Novozhilova N, Babina K, Polyakova M, Sokhova I, Sherstneva V, Zaytsev A, Makeeva I, Mikheikina A. The Effect of Different Compositions and Concentrations of Etidronate-Containing Irrigants on the Antibacterial Activity of Sodium Hypochlorite against Enterococcus faecalis and Candida albicans. Dent J (Basel) 2024; 12:46. [PMID: 38534270 PMCID: PMC10968783 DOI: 10.3390/dj12030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
We assessed the effect of different compositions and concentrations of two etidronate-containing irrigants on the antibacterial activity of sodium hypochlorite (SH) against Enterococcus faecalis and Candida albicans in vitro. Pure cultures of C. albicans and E. faecalis were isolated from root canal samples. The disc diffusion method was used to compare the antibacterial effect of pure SH and SH mixed with 9%, 15%, and 18% etidronate of two manufactures (dual rinse (DR); IsraDent (ID)) and EDTA. The pH and temperature of the solutions were measured immediately after mixing and within 40 min. The ANOVA revealed a significant influence of the type of irrigating solution on the C. albicans and E. faecalis inhibition zone diameters that ranged from 6.6 to 51.6 mm and from 6.4 to 12.4 mm, respectively. SH with DR 9% exhibited the highest effect against C. albicans. The antifungal activity of the other irrigants was SH = SH + DR15% = SH + DR18% = SH + ID9% > SH + EDTA > SH + ID15% > SH + ID18%. No significant differences in the anti-E. faecalis effect were revealed between the tested solutions except for the mixtures of SH and 15% and 18% ID, which exhibited no antiseptic effect. There was a strong positive correlation between antiseptic activity against both microorganisms and the pH values of the tested solutions. In conclusion, most etidronate formulations did not significantly hamper sodium hypochlorite activity against C. albicans and E. faecalis. The effect was concentration- and manufacturer-dependent.
Collapse
Affiliation(s)
- Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| | - Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| | - Inna Sokhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| | - Valeria Sherstneva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| | - Anna Mikheikina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (N.N.); (K.B.); (M.P.); (I.S.); (V.S.); (I.M.)
| |
Collapse
|
4
|
Alshanta OA, Albashaireh K, McKloud E, Delaney C, Kean R, McLean W, Ramage G. Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm 2022; 4:100072. [PMID: 35313556 PMCID: PMC8933684 DOI: 10.1016/j.bioflm.2022.100072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Om Alkhir Alshanta
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Khawlah Albashaireh
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Emily McKloud
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Christopher Delaney
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - William McLean
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
| | - Gordon Ramage
- Glasgow Endodontology and Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom
- Corresponding author.
| |
Collapse
|
5
|
Nassar R, Nassar M, Vianna ME, Naidoo N, Alqutami F, Kaklamanos EG, Senok A, Williams D. Antimicrobial Activity of Phytic Acid: An Emerging Agent in Endodontics. Front Cell Infect Microbiol 2021; 11:753649. [PMID: 34765567 PMCID: PMC8576384 DOI: 10.3389/fcimb.2021.753649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Background Phytic acid (IP6) is a promising and emerging agent, and because of its unique structure and distinctive properties, it lends itself to several applications in dentistry. Recently, IP6 was proposed as a potential chelating agent in endodontics. However, there is limited knowledge regarding its antimicrobial and antibiofilm effectiveness. The aims of this study, were therefore to evaluate the antimicrobial and antibiofilm activities of IP6 against a range of microbial species and compare these with ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl). The contact time required for IP6 to exert its bactericidal effect on Enterococcus faecalis was also determined. Methods The inhibitory and biocidal activities of IP6, EDTA and NaOCl were assessed using a broth microdilution assay against 11 clinical and reference strains of bacteria and a reference strain of Candida albicans. The contact time required for various IP6 concentrations to eliminate planktonic cultures of E. faecalis was determined using a membrane filtration method according to BS-EN-1040:2005. IP6 bactericidal activity was also evaluated using fluorescent microscopy, and the antibiofilm activity of the test agents was also determined. Results IP6 was biocidal against all tested microorganisms. At concentrations of 0.5%, 1% and 2%, IP6 required 5 min to exert a bactericidal effect on E. faecalis, while 5% IP6 was bactericidal after 30 s. IP6 also eradicated biofilms of the tested microorganisms. In conclusion, IP6 had notable antimicrobial effects on planktonic and biofilm cultures and exhibited rapid bactericidal effects on E. faecalis. This research highlighted, for the first time the antimicrobial and antibiofilm properties of IP6, which could be exploited, not only in dental applications, but also other fields where novel strategies to counter antimicrobial resistance are required.
Collapse
Affiliation(s)
- Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Morgana E Vianna
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Nerissa Naidoo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Fatma Alqutami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - David Williams
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Abusrewil S, Brown JL, Delaney C, Butcher MC, Tiba M, Scott JA, Ramage G, McLean W. Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics (Basel) 2021; 10:antibiotics10111317. [PMID: 34827255 PMCID: PMC8614659 DOI: 10.3390/antibiotics10111317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
Endodontic infection is a biofilm disease that is difficult to irradicate with current treatment protocols, and as such, persistent micro-organisms may lead to ongoing or recurrent disease. The potential for the use of enhanced filling materials to modify biofilm regrowth is a promising strategy. This current study aimed to evaluate the anti-biofilm efficacy of calcium silicate cements modified with chitosan. The development of mono-species and multi-species biofilms on ProRoot MTA, Biodentine and bovine dentine discs were explored using quantitative microbiology analysis. The effect on regrowth of biofilms was assessed following the addition of chitosan to each cement. In comparison to a dentine substrate, both materials did not show the ability to inhibit biofilm regrowth. Biodentine incorporated with chitosan displayed a dose-dependent reduction in multi-species biofilm regrowth, unlike MTA. Notably, interkingdom biofilms were shown to enhance bacterial tolerance in the presence of chitosan. This study demonstrates the potential to enhance the antimicrobial properties of Biodentine. The findings highlight the need for appropriate model systems when exploring antimicrobial properties of materials in vitro so that interspecies and interkingdom interactions that modify tolerance are not overlooked while still supporting the development of innovative materials.
Collapse
Affiliation(s)
- Sumaya Abusrewil
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - Jason L. Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Mark C. Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - Mohammed Tiba
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - J. Alun Scott
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (J.L.B.); (C.D.); (M.C.B.)
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G12 8QF, UK; (S.A.); (M.T.); (J.A.S.); (G.R.)
- Correspondence: ; Tel.: +44(0)141-956-0991
| |
Collapse
|
7
|
Antibacterial Effect of Sodium Hypochlorite and EDTA in Combination with High-Purity Nisin on an Endodontic-like Biofilm Model. Antibiotics (Basel) 2021; 10:antibiotics10091141. [PMID: 34572723 PMCID: PMC8469179 DOI: 10.3390/antibiotics10091141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides have been proposed as antibiofilm agents. Therefore, we evaluated the effect of endodontic irrigants combined or not with the antimicrobial peptide nisin against an endodontic biofilm model composed of eleven bacterial species. Biofilms were grown on hydroxyapatite discs for 3, 15 and 21 days and treated with 1.5% sodium hypochlorite (NaOCl) or 17% EDTA followed by high-purity nisin (nisin ZP) or saline for 5 min each. Differences between groups were tested by two-way ANOVA and Tukey’s multiple comparisons test (p < 0.05). Treatment with 1.5% NaOCl completely eliminated 3-d and 15-d biofilms but did not eradicate 21-d biofilms. Treatment with 1.5% NaOCl and 17% EDTA was equally effective against 21-d biofilms, showing 5-log and 4-log cell reduction, respectively, compared to the untreated control (9 log10, p < 0.05). No significant difference was found between 1.5% NaOCl + nisin ZP and 1.5% NaOCl in 21-d biofilms (p > 0.05). Likewise, no significant difference was found between 17% EDTA + nisin ZP and 17% EDTA treatments (p > 0.05). In conclusion, 1.5% NaOCl or 17% EDTA were effective strategies to combat mature biofilms. The additional use of nisin did not improve the activity of conventional irrigants against multispecies biofilms.
Collapse
|
8
|
Abusrewil S, Brown JL, Delaney CD, Butcher MC, Kean R, Gamal D, Scott JA, McLean W, Ramage G. Filling the Void: An Optimized Polymicrobial Interkingdom Biofilm Model for Assessing Novel Antimicrobial Agents in Endodontic Infection. Microorganisms 2020; 8:E1988. [PMID: 33327403 PMCID: PMC7764896 DOI: 10.3390/microorganisms8121988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
There is a growing realization that endodontic infections are often polymicrobial, and may contain Candida spp. Despite this understanding, the development of new endodontic irrigants and models of pathogenesis remains limited to mono-species biofilm models and is bacterially focused. The purpose of this study was to develop and optimize an interkingdom biofilm model of endodontic infection and use this to test suitable anti-biofilm actives. Biofilms containing Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, and Candida albicans were established from ontological analysis. Biofilms were optimized in different media and atmospheric conditions, prior to quantification and imaging, and subsequently treated with chlorhexidine, EDTA, and chitosan. These studies demonstrated that either media supplemented with serum were equally optimal for biofilm growth, which were dominated by S. gordonii, followed by C. albicans. Assessment of antimicrobial activity showed significant effectiveness of each antimicrobial, irrespective of serum. Chitosan was most effective (3 log reduction), and preferentially targeted C. albicans in both biofilm treatment and inhibition models. Chitosan was similarly effective at preventing biofilm growth on a dentine substrate. This study has shown that a reproducible and robust complex interkingdom model, which when tested with the antifungal chitosan, supports the notion of C. albicans as a key structural component.
Collapse
Affiliation(s)
- Sumaya Abusrewil
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - Jason L. Brown
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - Christopher D. Delaney
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - Mark C. Butcher
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - Ryan Kean
- Department of Biological Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK;
| | - Dalia Gamal
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - J. Alun Scott
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - William McLean
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| | - Gordon Ramage
- Glasgow Endodontics & Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G2 3JZ, UK; (S.A.); (J.L.B.); (C.D.D.); (M.C.B.); (D.G.); (J.A.S.); (W.M.)
| |
Collapse
|