1
|
Kuznetsova MV, Nesterova LY, Mihailovskaya VS, Selivanova PA, Kochergina DA, Karipova MO, Valtsifer IV, Averkina AS, Starčič Erjavec M. Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: Sensitivity to Chlorhexidine-Based Biocides and Prevalence of Efflux Pump Genes. Int J Mol Sci 2025; 26:355. [PMID: 39796210 PMCID: PMC11721292 DOI: 10.3390/ijms26010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.07%) and benzalkonium chloride (BAC, 0.055%). The prevalence of efflux pump genes associated with biocide resistance and their relationship to antibiotic resistance was also determined. Both biocides were more effective against Gram-positive S. aureus than Gram-negative bacteria. The most resistant strains were P. aeruginosa strains, which were mainly killed by 0.0016% CHX and by 0.0000084% (CHX)/0.0000066% (BAC) S7. The S7 bactericidal effect was observed on P. aeruginosa and S. aureus after 10 min, while the bactericidal effect of CHX was only observed after 30 min. qacEΔ1 and qacE efflux pump genes were prevalent among E. coli and K. pneumoniae, while mexB was more often detected in P. aeruginosa. norA, norB, mepA, mdeA, and sepA were prevalent in S. aureus. The observed prevalence of efflux pump genes highlights the potential problem whereby the sensitivity of bacteria to biocides could decline rapidly in the future.
Collapse
Affiliation(s)
- Marina V. Kuznetsova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
- Department of Microbiology and Virology, Perm State Medical University Named After Academician E. A. Wagner, 614000 Perm, Russia;
| | - Larisa Y. Nesterova
- Laboratory of Microorganisms’ Adaptation, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia;
| | - Veronika S. Mihailovskaya
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
| | - Polina A. Selivanova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
| | - Darja A. Kochergina
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
| | - Marina O. Karipova
- Department of Microbiology and Virology, Perm State Medical University Named After Academician E. A. Wagner, 614000 Perm, Russia;
| | - Igor V. Valtsifer
- Department of Multiphase Dispersed System, Institute of Technical Chemistry Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614013 Perm, Russia; (I.V.V.); (A.S.A.)
| | - Anastasia S. Averkina
- Department of Multiphase Dispersed System, Institute of Technical Chemistry Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614013 Perm, Russia; (I.V.V.); (A.S.A.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Lan L, Chen Y, Ji H, Wang T, Zhang R, Wong MH, Zhang J. Antibiotic-resistant genes derived from commercial organic fertilizers are transported to balconies of residential buildings by express delivery. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:500. [PMID: 39508960 DOI: 10.1007/s10653-024-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The rise in antibiotic-resistant genes (ARGs) has recently become a pressing issue, with livestock manure identified as a significant source of these genes. Yet, the distribution of fertilizers derived from livestock manure sold online, potentially containing high levels of ARGs and antibiotic-resistant bacteria (ARB), is often not considered. Our study involved a random survey of commercial organic fertilizers available on online marketplaces, focusing on 13 common ARGs and 2 integrons (intI1, intI2). We found significant ARGs linked to sulfonamides, macrolides, and tetracycline in the 20 fertilizer samples we tested. The gene copy numbers for ermC, sul2, and tetL were exceptionally high, reaching up to 1011 copies per gram of fertilizer in specific samples. Additionally, 18 out of 20 samples contained the critical β-lactam resistance genes blaTEM and blaKPC, with gene copy numbers up to 1010 copies/g. Integrons, intI1, and intI2 were present in all samples, with abundances ranging from 103 to 1010 copies/g. We categorized the 20 samples into three types for further analysis: poultry manure, livestock manure, and earthworm manure. Our findings indicated a high presence of ARGs in poultry manure compared to a lower occurrence in earthworm manure. The study also showed a strong correlation between integrons and specific ARGs. This research underscores the potential risk of commercial organic fertilizers as a pathway for spreading ARGs from the animal breeding environment to human settings through express transportation.
Collapse
Affiliation(s)
- Lihua Lan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuxin Chen
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Honghu Ji
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, People's Republic of China
| | - Ting Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ranran Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| |
Collapse
|
3
|
Hernández-Banqué C, Jové-Juncà T, Crespo-Piazuelo D, González-Rodríguez O, Ramayo-Caldas Y, Esteve-Codina A, Mercat MJ, Bink MCAM, Quintanilla R, Ballester M. Mutations on a conserved distal enhancer in the porcine C-reactive protein gene impair its expression in liver. Front Immunol 2023; 14:1250942. [PMID: 37781386 PMCID: PMC10539928 DOI: 10.3389/fimmu.2023.1250942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
C-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While CRP regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig CRP gene expression. The main goal of the present work was to study the regulatory mechanisms and identify functional genetic variants regulating CRP gene expression and CRP blood levels in pigs. The characterization of the porcine CRP proximal promoter region revealed a high level of conservation with both cow and human promoters, sharing binding sites for transcription factors required for CRP expression. Through genome-wide association studies and fine mapping, the most associated variants with both mRNA and protein CRP levels were localized in a genomic region 39.3 kb upstream of CRP. Further study of the region revealed a highly conserved putative enhancer that contains binding sites for several transcriptional regulators such as STAT3, NF-kB or C/EBP-β. Luciferase reporter assays showed the necessity of this enhancer-promoter interaction for the acute phase induction of CRP expression in liver, where differences in the enhancer sequences significantly modified CRP activity. The associated polymorphisms disrupted the putative binding sites for HNF4α and FOXA2 transcription factors. The high correlation between HNF4α and CRP expression levels suggest the participation of HNF4α in the regulatory mechanism of porcine CRP expression through the modification of its binding site in liver. Our findings determine, for the first time, the relevance of a distal regulatory element essential for the acute phase induction of porcine CRP in liver and identify functional polymorphisms that can be included in pig breeding programs to improve immunocompetence.
Collapse
Affiliation(s)
- Carles Hernández-Banqué
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
4
|
O'Connell LM, Coffey A, O'Mahony JM. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease. Anim Health Res Rev 2023; 24:12-27. [PMID: 37475561 DOI: 10.1017/s146625232300004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
Collapse
Affiliation(s)
- Laura M O'Connell
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M O'Mahony
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
5
|
Guenin MJ, Belloc C, Ducrot C, de Romémont A, Peyre M, Molia S. A participatory approach for building ex ante impact pathways towards a prudent use of antimicrobials in pig and poultry sectors in France. PLoS One 2022; 17:e0277487. [PMID: 36378661 PMCID: PMC9665392 DOI: 10.1371/journal.pone.0277487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public health threat responsible for 700,000 deaths per year worldwide. There is scientific evidence of the causal relationship between antimicrobial use (AMU) along the food chain and AMR. Improving AMU in livestock is therefore a key component in the fight against AMR. To improve AMU in livestock, there is no one-size-fits-all solution and strategies must be context-adapted and socially acceptable for actors in order to increase AMU sustainability. AMU decision-making is based on an interdependent set of economic, behavioral, ethical, and cultural factors that need to be assessed to advise on the potential impacts of measures. We hypothesized that a participatory strategic planning approach may increase the plausibility and the efficacy of the strategies formulated by facilitating the dialogue between actors of diverse backgrounds, stimulating innovative thinking and constant considerations of contextual factors, actors and impacts. We adapted and applied the ImpresS ex ante approach (IMPact in reSearch in the South, https://impress-impact-recherche.cirad.fr/) within a Living Lab engaging actors from the French pig and poultry sectors in co-creation of innovative strategies towards improved AMU. We conducted semi-structured interviews and participatory workshops between April 2021 and March 2022. The results describe 1) an initial diagnosis of the current AMU situation in the pig and poultry sectors in France; 2) a common vision of the future to which participants would like to contribute through the intervention; 3) an identification of the current problems opposed to this vision of the future; 4) a defined scope of the intervention; 5) a typology of actors protagonist or impacted by those issues and 6) outcome maps to solve a priority problem related to indicators and monitoring. This study provides recommendations for decision-makers on plausible and innovative strategies to sustainably improve AMU in pig and poultry sectors in France and evidence of the benefits of participatory strategic planning approaches.
Collapse
Affiliation(s)
| | | | - Christian Ducrot
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | | | - Marisa Peyre
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Sophie Molia
- UMR ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
6
|
Kulyar MFEA, Chen X, Bhutta ZA, Boruah P, Shabbir S, Akhtar M, Aqib AI, Ashar A, Li K. Editorial: Antimicrobials alternatives for the prevention and treatment of veterinary infectious diseases. Front Vet Sci 2022; 9:1025150. [PMID: 36157178 PMCID: PMC9501705 DOI: 10.3389/fvets.2022.1025150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Prerona Boruah
- DY Patil, Deemed to be University, Navi Mumbai, Maharastra, India
| | - Samina Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Amjad Islam Aqib
| | - Ambreen Ashar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
- Ambreen Ashar
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kun Li
| |
Collapse
|
7
|
Michalik M, Nowakiewicz A, Trościańczyk A, Kowalski C, Podbielska-Kubera A. Multidrug resistant coagulase-negative Staphylococcus spp. isolated from cases of chronic rhinosinusitis in humans. Study from Poland. Acta Microbiol Immunol Hung 2021; 69:68-76. [PMID: 34898473 DOI: 10.1556/030.2021.01580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
For many years, coagulase-negative staphylococci (CoNS) have been considered non-pathogenic bacteria. However, recently, CoNS are becoming more common bacteriological factors isolated from cases of chronic rhinosinusitis in humans. Moreover, most of them represent the multidrug-resistant or/and methicillin-resistant profile, which significantly increases the therapeutic difficulties. The aim of the study was to characterize profile of resistant coagulase-negative staphylococci isolated from cases of chronic rhinosinusitis in patients treated in a Medical Center in Warsaw in 2015-2016. The study material was derived from patients with diagnosed chronic rhinosinusitis treated at the MML Medical Center in Warsaw. The material was obtained intraoperatively from maxillary, frontal, and ethmoid sinuses. In total, 1,044 strains were isolated from the studied material. Coagulase-negative staphylococci were predominant, with the largest share of Staphylococcus epidermidis. Isolated CoNS were mainly resistant to macrolide, lincosamide, and tetracycline. Among the S. epidermidis strains, we also showed 35.6% of MDR and 34.7% of methicillin-resistant strains. The same values for other non-epidermidis species were 31.5% and 18.5%, respectively and the percentage of strains with MAR >0.2 was greater in S. epidermidis (32.6%) than S. non-epidermidis (23.9%). Although the percentage of strains resistant to tigecycline, glycopeptides, rifampicin and oxazolidinones was very small (2.3%, 1.9%, 1.4% and 0.7% respectively), single strains were reported in both groups. The study has shown a high proportion of MDR and methicillin-resistant CoNS strains, which indicates a large share of drug-resistant microorganisms in the process of persistence of chronic rhinosinusitis; therefore, isolation of this group of microorganisms from clinical cases using aseptic techniques should not be neglected.
Collapse
Affiliation(s)
| | - Aneta Nowakiewicz
- 2 University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Aleksandra Trościańczyk
- 2 University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Cezary Kowalski
- 3 University of Life Sciences, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Environmental Protection, Akademicka 12, 20-033, Lublin, Poland
| | | |
Collapse
|
8
|
Ma T, McAllister TA, Guan LL. A review of the resistome within the digestive tract of livestock. J Anim Sci Biotechnol 2021; 12:121. [PMID: 34763729 PMCID: PMC8588621 DOI: 10.1186/s40104-021-00643-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Antimicrobials have been widely used to prevent and treat infectious diseases and promote growth in food-production animals. However, the occurrence of antimicrobial resistance poses a huge threat to public and animal health, especially in less developed countries where food-producing animals often intermingle with humans. To limit the spread of antimicrobial resistance from food-production animals to humans and the environment, it is essential to have a comprehensive knowledge of the role of the resistome in antimicrobial resistance (AMR), The resistome refers to the collection of all antimicrobial resistance genes associated with microbiota in a given environment. The dense microbiota in the digestive tract is known to harbour one of the most diverse resistomes in nature. Studies of the resistome in the digestive tract of humans and animals are increasing exponentially as a result of advancements in next-generation sequencing and the expansion of bioinformatic resources/tools to identify and describe the resistome. In this review, we outline the various tools/bioinformatic pipelines currently available to characterize and understand the nature of the intestinal resistome of swine, poultry, and ruminants. We then propose future research directions including analysis of resistome using long-read sequencing, investigation in the role of mobile genetic elements in the expression, function and transmission of AMR. This review outlines the current knowledge and approaches to studying the resistome in food-producing animals and sheds light on future strategies to reduce antimicrobial usage and control the spread of AMR both within and from livestock production systems.
Collapse
Affiliation(s)
- Tao Ma
- Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4P4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13158467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quality and safety attributes of poultry products have attracted increasing widespread attention and interest from scholarly groups and the general population. As natural and safe alternatives to synthetic and artificial chemical drugs (e.g., antibiotics), botanical products are recently being used in poultry farms more than 60% of the time for producing organic products. Medicinal plants, and honeybee products, are natural substances, and they were added to poultry diets in a small amount (between 1% and 3%) as a source of nutrition and to provide health benefits for poultry. In addition, they have several biological functions in the poultry body and may help to enhance their welfare. These supplements can increase the bodyweight of broilers and the egg production of laying hens by approximately 7% and 10% and enhance meat and egg quality by more than 25%. Moreover, they can improve rooster semen quality by an average of 20%. Previous research on the main biological activities performed by biotics has shown that most research only concentrated on the notion of using botanical products as growth promoters, anti-inflammatory, and antibacterial agents. In the current review, the critical effects and functions of bee products and botanicals are explored as natural and safe alternative feed additives in poultry production, such as antioxidants, sexual-stimulants, immuno-stimulants, and for producing healthy products.
Collapse
|
10
|
Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the main targets of sustainable development is the reduction of environmental, social, and economic negative externalities associated with the production of foods and beverages. Those externalities occur at different stages of food chains, from the farm to the fork, with deleterious impacts to different extents. Increasing evidence testifies to the potential of microbial-based solutions and fermentative processes as mitigating strategies to reduce negative externalities in food systems. In several cases, innovative solutions might find in situ applications from the farm to the fork, including advances in food matrices by means of tailored fermentative processes. This viewpoint recalls the attention on microbial biotechnologies as a field of bioeconomy and of ‘green’ innovations to improve sustainability and resilience of agri-food systems alleviating environmental, economic, and social undesired externalities. We argue that food scientists could systematically consider the potential of microbes as ‘mitigating agents’ in all research and development activities dealing with fermentation and microbial-based biotechnologies in the agri-food sector. This aims to conciliate process and product innovations with a development respectful of future generations’ needs and with the aptitude of the systems to overcome global challenges.
Collapse
|