1
|
Videtta G, Sasia C, Galeotti N. High Rosmarinic Acid Content Melissa officinalis L. Phytocomplex Modulates Microglia Neuroinflammation Induced by High Glucose. Antioxidants (Basel) 2025; 14:161. [PMID: 40002348 PMCID: PMC11851730 DOI: 10.3390/antiox14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic patients experience hyperglycemia, which can affect multiple organs, including brain function, leading to disabling neurological complications. Hyperglycemia plays a key role in promoting neuroinflammation, the most common complication in diabetic individuals, through the activation of microglia. Attenuating hyperglycemia-related neuroinflammation in microglia may reduce diabetes-associated neurological comorbidities. Natural remedies containing phenolic compounds have shown efficacy in mitigating microglia-mediated neuroinflammation. The aim of this study was to investigate the potential of a Melissa officinalis L. (MO) phytocomplex, obtained from plant cell cultures and enriched in its main polyphenolic constituent, rosmarinic acid (RA), in attenuating hyperglycemia-induced neuroinflammation in microglia. A time-course morphological analysis of BV2 microglial cells exposed to high glucose (HG) levels showed a shift towards a proinflammatory phenotype, peaking after 48 h, which was reversed by pretreatment with MO. Biochemical assays revealed increased expression of the microglial marker CD11b (187%), activation of the NF-κB pathway (179%), expression of iNOS (225%), enhanced phosphorylation of ERK1/2 (180%), and increased expression of the proinflammatory cytokine IL-6 (173%). Pretreatment with MO prevented the aberrant expression of these proinflammatory mediators and restored SIRT1 levels. Exposure of neuronal SH-SY5Y cells to the conditioned medium from HG-exposed microglia significantly reduced cell viability. MO counteracted this effect, exhibiting neuroprotective activity. RA showed efficacy comparable to that of MO. In conclusion, MO and RA attenuated microglia-mediated oxidative imbalance and neuroinflammation under HG exposure by inhibiting the morphological shift toward a proinflammatory phenotype induced by HG and abrogating the subsequent activation of the downstream ERK1/2-NF-κB-iNOS pathway.
Collapse
Affiliation(s)
| | | | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (G.V.); (C.S.)
| |
Collapse
|
2
|
Ross-Munro E, Isikgel E, Fleiss B. Evaluation of the Efficacy of a Full-Spectrum Low-THC Cannabis Plant Extract Using In Vitro Models of Inflammation and Excitotoxicity. Biomolecules 2024; 14:1434. [PMID: 39595610 PMCID: PMC11592195 DOI: 10.3390/biom14111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Evidence has accumulated that Cannabis-derived compounds have the potential to treat neuroinflammatory changes present in neurodevelopmental conditions such as autism spectrum disorder. However, research is needed on the specific brain health benefits of strains of whole Cannabis extract that are ready for commercial production. Here, we explore the anti-inflammatory and neuroprotective effects of NTI-164, a genetically unique high-cannabidiol (CBD), low-Δ9-tetrahydrocannabinol extract, and also CBD alone on BV-2 microglia and SHSY-5Y neurons. Inflammation-induced up-regulation of microglial inflammatory markers was significantly attenuated by NTI-164, but not by CBD. NTI-164 promoted undifferentiated neuron proliferation and differentiated neuron survival under excitotoxic conditions. These effects suggest the potential for NTI-164 as a treatment for neuropathologies.
Collapse
Affiliation(s)
- Emily Ross-Munro
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Esra Isikgel
- Fenix Innovation Group Pty Ltd., Melbourne, VIC 3149, Australia;
| | - Bobbi Fleiss
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
3
|
Kato H, Iwashita K, Iwasa M, Kato S, Yamakage H, Suganami T, Tanaka M, Satoh-Asahara N. Imeglimin Exhibits Novel Anti-Inflammatory Effects on High-Glucose-Stimulated Mouse Microglia through ULK1-Mediated Suppression of the TXNIP-NLRP3 Axis. Cells 2024; 13:284. [PMID: 38334676 PMCID: PMC10854746 DOI: 10.3390/cells13030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemiological risk factor for dementia and has been implicated in multifactorial pathologies, including neuroinflammation. In the present study, we aimed to elucidate the potential anti-inflammatory effects of imeglimin, a novel antidiabetic agent, on high-glucose (HG)-stimulated microglia. Mouse microglial BV2 cells were stimulated with HG in the presence or absence of imeglimin. We examined the effects of imeglimin on the levels of proinflammatory cytokines, intracellular reactive oxygen species (ROS), mitochondrial integrity, and components related to the inflammasome or autophagy pathways in these cells. Our results showed that imeglimin suppressed the HG-induced production of interleukin-1beta (IL-1β) by reducing the intracellular ROS levels, ameliorating mitochondrial dysfunction, and inhibiting the activation of the thioredoxin-interacting protein (TXNIP)-NOD-like receptor family pyrin domain containing 3 (NLRP3) axis. Moreover, the inhibitory effects of imeglimin on the TXNIP-NLRP3 axis depended on the imeglimin-induced activation of ULK1, which also exhibited novel anti-inflammatory effects without autophagy induction. These findings suggest that imeglimin exerted novel suppressive effects on HG-stimulated microglia through the ULK1-TXNIP-NLRP3 axis, and may, thereby, contribute to the development of innovative strategies to prevent T2DM-associated cognitive impairment.
Collapse
Affiliation(s)
- Hisashi Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Kaori Iwashita
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Masayo Iwasa
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Sayaka Kato
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
| | - Masashi Tanaka
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Rehabilitation, Health Science University, Minamitsuru-gun 401-0380, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto 612-8555, Japan; (H.K.)
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya 466-8550, Japan
| |
Collapse
|
4
|
Towriss M, MacVicar B, Ciernia AV. Modelling Microglial Innate Immune Memory In Vitro: Understanding the Role of Aerobic Glycolysis in Innate Immune Memory. Int J Mol Sci 2023; 24:8967. [PMID: 37240311 PMCID: PMC10219556 DOI: 10.3390/ijms24108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system, play important roles in maintaining brain homeostasis and facilitating the brain's innate immune responses. Following immune challenges microglia also retain immune memories, which can alter responses to secondary inflammatory challenges. Microglia have two main memory states, training and tolerance, which are associated with increased and attenuated expression of inflammatory cytokines, respectively. However, the mechanisms differentiating these two distinct states are not well understood. We investigated mechanisms underlying training versus tolerance memory paradigms in vitro in BV2 cells using B-cell-activating factor (BAFF) or bacterial lipopolysaccharide (LPS) as a priming stimulus followed by LPS as a second stimulus. BAFF followed by LPS showed enhanced responses indicative of priming, whereas LPS followed by LPS as the second stimulus caused reduced responses suggestive of tolerance. The main difference between the BAFF versus the LPS stimulus was the induction of aerobic glycolysis by LPS. Inhibiting aerobic glycolysis during the priming stimulus using sodium oxamate prevented the establishment of the tolerized memory state. In addition, tolerized microglia were unable to induce aerobic glycolysis upon LPS restimulus. Therefore, we conclude that aerobic glycolysis triggered by the first LPS stimulus was a critical step in the induction of innate immune tolerance.
Collapse
Affiliation(s)
- Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Liang Z, Maher P. Structural Requirements for the Neuroprotective and Anti-Inflammatory Activities of the Flavanone Sterubin. Antioxidants (Basel) 2022; 11:2197. [PMID: 36358569 PMCID: PMC9686938 DOI: 10.3390/antiox11112197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-associated disease with no treatments that can prevent, delay, slow, or stop its progression. Thus, new approaches to drug development are needed. One promising approach is the use of phenotypic screening assays that can identify compounds that have therapeutic efficacy in target pathways relevant to aging and cognition, as well as AD pathology. Using this approach, we identified the flavanone sterubin, from Yerba santa (Eriodictyon californicum), as a potential drug candidate for the treatment of AD. Sterubin is highly protective against multiple initiators of cell death that activate distinct death pathways, potently induces the antioxidant transcription factor Nrf2, and has strong anti-inflammatory activity. Moreover, in a short-term model of AD, it was able to prevent decreases in short- and long-term memory. In order to better understand which key chemical functional groups are essential to the beneficial effects of sterubin, we compared the activity of sterubin to that of seven closely related flavonoids in our phenotypic screening assays. Surprisingly, only sterubin showed both potent neuroprotective activity against multiple insults as well as strong anti-inflammatory activity against several distinct inducers of inflammation. These effects correlated directly with the ability of sterubin to strongly induce Nrf2 in both nerve and microglial cells. Together, these results define the structural requirements underlying the neuroprotective and anti-inflammatory effects of sterubin and they provide the basis for future studies on new compounds based on sterubin.
Collapse
Affiliation(s)
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| |
Collapse
|