1
|
Blancas-Galicia L, Cova-Guzmán T, Scheffler-Mendoza S, Rivas-Larrauri F, Bustamante-Ogando JC, Espinosa-Padilla S, Yamazaki-Nakashimada MA. Postinfectious manifestations in two pediatric female X-linked carriers of chronic granulomatous disease. Pediatr Allergy Immunol 2025; 36:e70114. [PMID: 40411120 DOI: 10.1111/pai.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/26/2025]
Affiliation(s)
| | - Tiareth Cova-Guzmán
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | | | | | | | - Sara Espinosa-Padilla
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | | |
Collapse
|
2
|
Leiding JW, Mathews CE, Arnold DE, Chen J. The Role of NADPH Oxidase 2 in Leukocytes. Antioxidants (Basel) 2025; 14:309. [PMID: 40227295 PMCID: PMC11939230 DOI: 10.3390/antiox14030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
NADPH oxidase (NOX) family members are major resources of intracellular reactive oxygen species (ROS). In the immune system, ROS derived from phagocytic NOX (NOX2) participate in both pathogen clearance and signaling transduction. The role of NOX2 in neutrophils and macrophages has been well studied as mutations in NOX2 subunits cause chronic granulomas disease (CGD). NOX2 is expressed across a wide range of immune cells and recent reports have demonstrated that NOX2-derived ROS play important roles in other immune cells during an immune response. In this review, we summarize current knowledge of functions of NADPH oxidase 2 in each subset of leukocytes, as well as associations of NOX2 deficiency with diseases associated specifically with autoimmunity and immune deficiency. We also discuss important knowledge gaps as well as potential future directions for NOX2 research.
Collapse
Affiliation(s)
- Jennifer W. Leiding
- Division of Allergy and Immunology, John Hopkins University, Baltimore, MD 21218, USA;
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Danielle E. Arnold
- Immune Deficiency Cellular Therapy Program, National Cancer Institutes, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
3
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Zhang Y, Shu Z, Li Y, Piao Y, Sun F, Han T, Wang T, Mao H. X-linked chronic granulomatous disease secondary to skewed X-chromosome inactivation in female patients. Clin Exp Immunol 2024; 215:261-267. [PMID: 38066563 PMCID: PMC10876111 DOI: 10.1093/cei/uxad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a heterogeneous primary immunodeficiency. X-linked (XL) CGD caused by gene defects of CYBB is the most prevalent type of CGD. OBJECTIVE We aim to understand the clinical and molecule features of XL-CGD secondary to skewed X-chromosome inactivation (XCI) in female. METHODS We retrospectively reviewed the medical records of a female patient diagnosed with XL-CGD. Flow cytometry was used to detect the respiratory burst function. After restriction enzyme digestion of DNA, XCI was calculated by detecting fluorescent PCR products with capillary electrophoresis. The previously published female XL-CGD cases secondary to skewed XCI was summarized. RESULTS Clinical data were available for 15 female subjects. The median age of diagnosis was 16 years. Consistent with XL-CGD in males, infection was the most frequent manifestation in the female patients. Catalase-positive pathogens including Serratia marcescens and Staphylococcus aureus infections were the most common pathogens. Autoimmune/autoinflammation manifestations were observed in five patients. Dihydrorhodamine (DHR) assay showed that median %DHR+ values were 6.5% and the values varying with age were observed in 2 patients. All patients had a skewing XCI and there was no consistency between the daughter and carrier mother. Anti-infective treatment was effective in majority and there was no mortality reported in XL-CGD female patients to date. CONCLUSION XL-CGD should not be neglected in female patients manifested as CGD phenotype and it is necessary to make periodic clinical evaluation of CGD female carriers as the neutrophil oxidative function may decline with aging and increase the risk for infection.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Zhou Shu
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yan Li
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yurong Piao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Fei Sun
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tongxin Han
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tianyou Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
| | - Huawei Mao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing, People's Republic of China
| |
Collapse
|
5
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
She C, Yang Y, Zang B, Yao Y, Liu Q, Leung PSC, Liu B. Effect of LncRNA XIST on Immune Cells of Primary Biliary Cholangitis. Front Immunol 2022; 13:816433. [PMID: 35309298 PMCID: PMC8931309 DOI: 10.3389/fimmu.2022.816433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/23/2023] Open
Abstract
Objective Primary biliary cholangitis (PBC) is an autoimmune disease with significant gender difference. X chromosome inactivation (XCI) plays important roles in susceptibility to diseases between genders. This work focuses on the differences of LncRNA XIST in several defined immune cells populations as well as its effects on naive CD4+ T cells proliferation and differentiation in patients with PBC. Methods NKs, B cells, CD4+ T, and CD8+ T cells were separated by MicroBeads from peripheral blood mononuclear cells (PBMCs) of PBC patients and healthy control (HC). The expression levels of LncRNA XIST in these immune cells were quantified by qRT-PCR and their subcellular localized analyzed by FISH. Lentivirus were used to interfere the expression of LncRNA XIST, and CCK8 was used to detect the proliferation of naive CD4+ T cells in PBC patients. Finally, naive CD4+ T cells were co-cultured with the bile duct epithelial cells (BECs), and the effects of LncRNA XIST on the typing of naive CD4+ T cells and related cytokines were determined by qRT-PCR and ELISA. Results The expression levels of LncRNA XIST in NKs and CD4+ T cells in PBC patients were significantly higher than those in HC, and were primarily located at the nucleus. LncRNA XIST could promote the proliferation of naive CD4+ T cells. When naive CD4+ T cells were co-cultured with BECs, the expressions of IFN-γ, IL-17, T-bet and RORγt in naive CD4+ T cells were decreased. Conclusion LncRNA XIST was associated with lymphocyte abnormalities in patients with PBC. The high expression of LncRNA XIST could stimulate proliferation and differentiation of naive CD4+ T cells, which might account for the high occurrence of PBC in female.
Collapse
Affiliation(s)
- Chunhui She
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yifei Yang
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Zang
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Yao
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qixuan Liu
- Epidemiology and Biostatistics, Maternal and Child Health, School of Public Health (SPH) Department, Boston University, Boston, MA, United States
| | - Patrick S. C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, United States
| | - Bin Liu
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bin Liu,
| |
Collapse
|