1
|
Tiburzi S, Lezcano V, Principe G, Montiel Schneider MG, Miravalles AB, Lassalle V, Bruzzone A, González-Pardo V. Quercetin-loaded magnetic nanoparticles: a promising tool for antitumor treatment in human breast cancer cells. J Drug Target 2025:1-16. [PMID: 40059516 DOI: 10.1080/1061186x.2025.2477764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Quercetin (QUE) is a phytoestrogen with known antitumor properties; however, its hydrophobic nature and low bioavailability limit its efficacy as an anticancer drug. To address this, we explored loading QUE onto a non-toxic nanocarrier. This study focused on the biological activity of magnetic iron oxide nanoparticles coated with polyethylene glycol (MAG@PEG) loaded with QUE (MAG@PEG@QUE) in MCF-7 cells. The MAG@PEG nanosystem was synthesised using a hydrothermal method, and QUE was incorporated by adding an alcoholic solution of QUE to an aqueous dispersion of MAG@PEG. QUE incorporation was confirmed qualitatively by FTIR spectroscopy and quantitatively through UV-visible spectroscopy. Cytotoxicity studies showed that MAG@PEG@QUE, at a concentration equivalent to the half-maximal inhibitory concentration (IC50) of free QUE, significantly reduced cell proliferation and viability while increasing apoptosis. MCF-7 cells treated with MAG@PEG@QUE also displayed actin cytoskeleton alterations typical of apoptotic cells. Transmission electron microscopy revealed clusters of magnetic nanoparticles within cellular vesicles. Targeted delivery of these nanoparticles was achieved using a static magnetic field, leading to high intracellular accumulation and selective cell death in targeted areas, without affecting adjacent cells. In conclusion, MAG@PEG@QUE shows comparable antitumor effects to free QUE and has the potential to enhance QUE's bioavailability and targeted delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Silvina Tiburzi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), UNS-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Virginia Lezcano
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), UNS-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gabriel Principe
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), UNS-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - María Gabriela Montiel Schneider
- Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Instituto de Química del Sur (INQUISUR), UNS-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Alicia B Miravalles
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Verónica Lassalle
- Departamento de Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Instituto de Química del Sur (INQUISUR), UNS-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET-Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), UNS-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
2
|
Bejko M, Yaman YA, Keyes A, Bagur A, Rosa P, Gayot M, Weill F, Mornet S, Sandre O. Structure-Function Relationship of Iron Oxide Nanoflowers: Optimal Sizes for Magnetic Hyperthermia Depending on Alternating Magnetic Field Conditions. Chemphyschem 2024; 25:e202400023. [PMID: 39046870 DOI: 10.1002/cphc.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al., presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer. Although of significantly smaller diameter, the specific adsorption rate (SAR) of IONFs reach values on the order of 1 kW g-1, as large as "magnetosomes" that are natural magnetic nanoparticles typically ~40 nm found in certain bacteria, which can be grown artificially but with much lower yield compared to chemical synthesis such as the polyol route. This work aims at better understanding the structure-property relationships, linking the internal IONF nanostructure as observed by high resolution transmission electron microscopy (HR-TEM) to their magnetic properties. A library of mono- and multicore IONFs is presented, with diameters ranging from 11 to 30 nm in a narrow size distribution. More particularly, by relating their structural features (diameter, morphology, defects…) to their magnetic properties investigated by utilizing AC magnetometry over a wide range of alternating magnetic field (AMF) conditions, we showed that the SAR values of all synthesized batches vary with overall diameter and number of constituting cores. These variations are in qualitative agreement with theoretical predictions either by the Linear Response Theory (LRT) at low fields or with the Stoner-Wohlfarth (SW) model at larger amplitudes, and with numerical simulations reported previously. More precisely, our results show a continuous (almost quadratic) increase of SAR with IONF diameter for AMF amplitudes of 20 kA m-1 and above, whatever the frequency between 146 and 344 kHz, and a pronounced maximum at an IONF diameter of 22 nm for amplitudes of 16 kA m-1 and below. Thank to this understanding of the impact of size and core multiplicity, stable colloidal solutions of IONPs can be synthesized with diameters targeting a SAR value adapted to the theragnostic approach envisioned.
Collapse
Affiliation(s)
- Megi Bejko
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Yasmina Al Yaman
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Anthony Keyes
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| | - Auriane Bagur
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Patrick Rosa
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Marion Gayot
- University of Bordeaux, CNRS, PLACAMAT, UAR 3626, 33600, Pessac, France
| | - Francois Weill
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Stéphane Mornet
- University of Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600, Pessac, France
| | - Olivier Sandre
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France
| |
Collapse
|
3
|
Sadžak A, Eraković M, Šegota S. Kinetics of Flavonoid Degradation and Controlled Release from Functionalized Magnetic Nanoparticles. Mol Pharm 2023; 20:5148-5159. [PMID: 37651612 DOI: 10.1021/acs.molpharmaceut.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are naturally occurring antioxidants that have been shown to protect cell membranes from oxidative stress and have a potential use in photodynamic cancer treatment. However, they degrade at physiological pH values, which is often neglected in drug release studies. Kinetic study of flavonoid oxidation can help to understand the mechanism of degradation and to correctly analyze flavonoid release data. Additionally, the incorporation of flavonoids into magnetic nanocarriers can be utilized to mitigate degradation and overcome their low solubility, while the release can be controlled using magnetic fields (MFs). An approach that combines alternating least squares (ALS) and multilinear regression to consider flavonoid autoxidation in release studies is presented. This approach can be used in general cases to account for the degradation of unstable drugs released from nanoparticles. The oxidation of quercetin, myricetin (MCE), and myricitrin (MCI) was studied in PBS buffer (pH = 7.4) using UV-vis spectrophotometry. ALS was used to determine the kinetic profiles and characteristic spectra, which were used to analyze UV-vis data of release from functionalized magnetic nanoparticles (MNPs). MNPs were selected for their unique magnetic properties, which can be exploited for both targeted drug delivery and control over the drug release. MNPs were prepared and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, superconducting quantum interference device magnetometer, and electrophoretic mobility measurements. Autoxidation of all three flavonoids follows a two-step first-order kinetic model. MCE showed the fastest degradation, while the oxidation of MCI was the slowest. The flavonoids were successfully loaded into the prepared MNPs, and the drug release was described by the first-order and Korsmeyer-Peppas models. External MFs were utilized to control the release mechanism and the cumulative mass of the flavonoids released.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
4
|
The Increased Release Kinetics of Quercetin from Superparamagnetic Nanocarriers in Dialysis. Antioxidants (Basel) 2023; 12:antiox12030732. [PMID: 36978980 PMCID: PMC10045069 DOI: 10.3390/antiox12030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The actual cumulative mass of released quercetin from nanoparticles within the dialysis membrane was determined under the influence of external stationary and alternating magnetic fields. We have shown that the control of the release kinetics of quercetin from MNPs, i.e., the distribution of quercetin between the nanoparticles and the suspension within the membrane, can be tuned by the simple combination of stationary and alternating magnetic fields. Under non-sink conditions, the proportion of quercetin in the suspension inside the membrane is increased toward the nanoparticles, resulting in the increased release of quercetin. The results obtained could be applied to the release of insoluble flavonoids in aqueous suspensions in general.
Collapse
|
5
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
6
|
Characterization and Encapsulation of Natural Antioxidants: Interaction, Protection, and Delivery. Antioxidants (Basel) 2022; 11:antiox11081434. [PMID: 35892636 PMCID: PMC9332303 DOI: 10.3390/antiox11081434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
|
7
|
Scurti S, Caretti D, Mollica F, Di Antonio E, Amorati R. Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11061163. [PMID: 35740061 PMCID: PMC9219998 DOI: 10.3390/antiox11061163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.
Collapse
Affiliation(s)
- Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Erika Di Antonio
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
- Correspondence:
| |
Collapse
|
8
|
Agraharam G, Girigoswami A, Girigoswami K. Myricetin: a Multifunctional Flavonol in Biomedicine. CURRENT PHARMACOLOGY REPORTS 2022; 8:48-61. [PMID: 35036292 PMCID: PMC8743163 DOI: 10.1007/s40495-021-00269-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVEIW The root cause of many diseases like CVD, cancer, and aging is free radicals which exert their effect by interfering with different metabolic pathways. The sources of free radicals can be exogenous, like UV rays from sunlight, and endogenous due to different metabolic by-products.In our body, there are defense mechanisms present, such as antioxidant enzymes and antioxidant molecules to combat these free radicals, but if there is an overload of these free radicals in our body, the defense system may not be sufficient to neutralize these free radicals. In such situations, we are exposed to a chronic low dose of oxidants creating oxidative stress, which is responsible for eliciting different diseases. RECENT FINDINGS Pubmed and Google Scholar are the search engines used to sort out relevant papers on myricetin and its role in combating many diseases. Myricetin is present in many fruits and vegetables and is a known antioxidant. It can elevate the antioxidant enzyme levels; reduces the lipid peroxidation; and is known to protect against cancer. In the case of myocardial dysfunction, myricetin has been shown to suppress the inflammatory cytokines and reduced the mortality rate. Myricetin has also been found to reduce platelet aggregation and control the viral infections by interfering in the DNA replication pathways. SUMMARY In this paper, we have briefly reviewed about the different type and site of free radicals and the role of myricetin in addressing the ROS and different diseases.
Collapse
Affiliation(s)
- Gopikrishna Agraharam
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamilnadu India
| |
Collapse
|