1
|
He H, Weng S, Li C, He J. Acute hypoxia stress impairs Litopenaeus vannamei resistance to white spot syndrome virus by downregulating chitin-binding proteins. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110330. [PMID: 40222692 DOI: 10.1016/j.fsi.2025.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hypoxia stress is a key environmental stressor that can induce white spot syndrome virus (WSSV) outbreaks, but underlying mechanisms remain unclear. Here, transcriptome analysis and RT-PCR were conducted to investigate the impact of acute hypoxia stress on gene expression profiles in shrimp. We revealed that acute hypoxia stress significantly altered the expression profile of genes in shrimp gill, particularly downregulating genes encoding chitin-binding proteins (CBPs), including Mucin-19, GAAP, CP1114, SgAbd-1, pro-Resilin, Obstructor-E, CP, GP1, and AMP1A. Downregulation of Mucin-19, GAAP, CP1114, and SgAbd-1 by RNA interference significantly increased shrimp mortality and viral loads following WSSV infection. Temporal expression analysis further confirmed that Mucin-19, GAAP, CP1114, and SgAbd-1 were involved in WSSV infection. Thus, acute hypoxia stress facilitates WSSV infection by inhibiting CBPs expression. This study provides the first evidence of the role of shrimp CBPs in response to hypoxia stress and antiviral defense, offering novel insights into environmental stress-host-virus interactions.
Collapse
Affiliation(s)
- Honghui He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
2
|
Sun K, Li H, Dong Y, Cao L, Li D, Li J, Zhang M, Yan D, Yang B. The Use of Identified Hypoxia-related Genes to Generate Models for Predicting the Prognosis of Cerebral Ischemia‒reperfusion Injury and Developing Treatment Strategies. Mol Neurobiol 2025; 62:3098-3124. [PMID: 39230867 PMCID: PMC11790705 DOI: 10.1007/s12035-024-04433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Cerebral ischemia‒reperfusion injury (CIRI) is a type of secondary brain damage caused by reperfusion after ischemic stroke due to vascular obstruction. In this study, a CIRI diagnostic model was established by identifying hypoxia-related differentially expressed genes (HRDEGs) in patients with CIRI. The ischemia‒reperfusion injury (IRI)-related datasets were downloaded from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ), and hypoxia-related genes in the Gene Cards database were identified. After the datasets were combined, hypoxia-related differentially expressed genes (HRDEGs) expressed in CIRI patients were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the HRDEGs were performed using online tools. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed with the combined gene dataset. CIRI diagnostic models based on HRDEGs were constructed via least absolute shrinkage and selection operator (LASSO) regression analysis and a support vector machine (SVM) algorithm. The efficacy of the 9 identified hub genes for CIRI diagnosis was evaluated via mRNA‒microRNA (miRNA) interaction, mRNA-RNA-binding protein (RBP) network interaction, immune cell infiltration, and receiver operating characteristic (ROC) curve analyses. We then performed logistic regression analysis and constructed logistic regression models based on the expression of the 9 HRDEGs. We next established a nomogram and calibrated the prediction data. Finally, the clinical utility of the constructed logistic regression model was evaluated via decision curve analysis (DCA). This study revealed 9 critical genes with high diagnostic value, offering new insights into the diagnosis and selection of therapeutic targets for patients with CIRI. : Not applicable.
Collapse
Affiliation(s)
- Kaiwen Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hongwei Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yang Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lei Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongpeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jinghong Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Manxia Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongming Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Wang Y, Qiao G, Yue Y, Peng S, Fu H. Transcriptomic Analysis of the Hepatopancreas in the Sex-Related Size Differences of Macrobrachium nipponense. Vet Sci 2024; 11:445. [PMID: 39330824 PMCID: PMC11435631 DOI: 10.3390/vetsci11090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Macrobrachium nipponense, a commercially popular crustacean species within the Chinese context, is recognized for its exceptional nutritional composition and palatability. There are significant differences in growth between male and female M. nipponense. Herein, transcriptomics was used to determine the hepatopancreas transcriptome differences between sex-related size differences in M. nipponense. We identified 974 differentially expressed genes (DEGs) between the SHE (female) and BHE (male) groups, which were validated using RT-qPCR. The genes encoding matrix metalloproteinase-9 (MM9), Ribosome-binding protein 1 (RBP1), Aly/REF export factor 2, and hematological and neurological expressed 1 (HN1) may play a role in modulating the sex-related size differences observed in M. nipponense. Clusters of orthologous groups and gene ontology functional analysis demonstrated that the DEGs for sex-related size in M.nipponense were associated with various biological functions. The Kyoto Encyclopedia of Genes and Genomes pathways analysis demonstrated that upregulated DEGs were mainly enriched in lysine biosynthesis, tryptophan metabolism, and lysine degradation pathways, whereas the downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, retinol metabolism, and drug metabolism-cytochrome P450 pathways. The results indicated the molecular mechanism underlying the sex-related size differences and identified key genes. This data will be invaluable to support explanations of individual differences between male and female prawns.
Collapse
Affiliation(s)
- Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Guangde Qiao
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Yanfeng Yue
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
4
|
Tu H, Peng X, Yao X, Tang Q, Xia Z, Li J, Yang G, Yi S. Integrated Transcriptomic and Metabolomic Analyses Reveal Low-Temperature Tolerance Mechanism in Giant Freshwater Prawn Macrobrachium rosenbergii. Animals (Basel) 2023; 13:ani13101605. [PMID: 37238035 DOI: 10.3390/ani13101605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Water temperature, as an important environmental factor, affects the growth and metabolism of aquatic animals and even their survival. The giant freshwater prawn (GFP) Macrobrachium rosenbergii is a kind of warm-water species, and its survival temperature ranges from 18 °C to 34 °C. In this study, we performed transcriptomic and metabolomic analyses to clarify the potential molecular mechanism of responding to low-temperature stress in adult GFP. The treatments with low-temperature stress showed that the lowest lethal temperature of the GFP was 12.3 °C. KEGG enrichment analyses revealed that the differentially expressed genes and metabolites were both enriched in lipid and energy metabolism pathways. Some key genes, such as phosphoenolpyruvate carboxykinase and fatty acid synthase, as well as the content of the metabolites dodecanoic acid and alpha-linolenic acid, were altered under low-temperature stress. Importantly, the levels of unsaturated fatty acids were decreased in LS (low-temperature sensitive group) vs. Con (control group). In LT (low-temperature tolerant group) vs. Con, the genes related to fatty acid synthesis and degradation were upregulated to cope with low-temperature stress. It suggested that the genes and metabolites associated with lipid metabolism and energy metabolism play vital roles in responding to low-temperature stress. This study provided a molecular basis for the selection of a low-temperature tolerant strain.
Collapse
Affiliation(s)
- Haihui Tu
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xin Peng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xinyi Yao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Jingfen Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Guoliang Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| |
Collapse
|
5
|
Huo D, Zhang L, Yang H, Sun L. Adaptation to hypoxic stress involves amino acid metabolism: A case in sea cucumber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121766. [PMID: 37142211 DOI: 10.1016/j.envpol.2023.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Low dissolved oxygen (LO) in seawater negatively affects aquatic animals and has received considerable attention. However, there is still much to learn about how echinoderms, which are keystone species in benthic ecosystems, respond to hypoxic stress. Here, we detected differentially expressed metabolites (DEMs) in sea cucumber (Apositchopus japonicus) between normoxic conditions (NC group) and hypoxic conditions (2 mg L-1) for 3 and 7 days (i.e., LO3 and LO7 groups). A total of 156, 180, and 95 DEMs were found in the NC versus LO3, NC vs. LO7, and LO3 vs. LO7 comparisons, respectively. Amino acids were the most abundant class of DEMs, and "biosynthesis of amino acids" was an enriched pathway in all three comparisons. Most of the enriched metabolite sets under hypoxic stress were related to metabolism. As the duration of the hypoxia treatment extended, the metabolism-related process maintained an upward trend, and signaling pathways maintained a downward trend. Thus, metabolism-related processes are affected in hypoxia-stressed sea cucumber, and amino acid metabolism is the most important process for adaption to hypoxic conditions, potentially function in osmotic regulation and energy regulation. Our results shed light on the adaptative strategies of sea cucumber to challenging environmental conditions.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| |
Collapse
|
6
|
Wang S, Sun M, Ning Z, Chen Y, Zhou H, Mu W. The effects of sustained and diel-cycling hypoxia on high-latitude fish Phoxinus lagowskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101059. [PMID: 36706598 DOI: 10.1016/j.cbd.2023.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
High-latitude fish are subjected to sustained and diel-cycling hypoxia. Oxygen deficiency could pose a serious threat to fish, but little information is available regarding the response mechanisms employed by high-latitude fish to sustained and diel-cycling hypoxia. In this study, a combination of transcriptomics and metabolomics were used to examine the molecular response mechanisms actioned by sustained and diel-cycling hypoxia in the high-latitude fish, Phoxinus lagowskii. P. lagowskii was divided into normoxic control (6.0-7.0 mg/L dissolved oxygen), sustained (1.5 mg/L dissolved oxygen), and diel-cycling hypoxic treatment (6.0-7.0 mg/L between 07:00-21:00, and 3.0-4.0 mg/L between 21:00-07:00) tanks for 28 days. Differentially expressed genes (DEGs) and significantly different metabolites (DMs) related to digestive proteases, lipid metabolism, estrogen signaling pathway, steroid hormone biosynthesis, glutathione metabolism, and tryptophan metabolism were identified from comparative metabolomic and transcriptomic data expression profiles within the liver. The current study found that P. lagowskii had significantly different responses between sustained and diel-cycling hypoxia. P. lagowskii faced with sustained hypoxia may enhance their tolerance capacity through phospholipid and glutathione metabolism. Our data provide new insights into the high latitude fish coping with changes in hypoxia and warrants further investigation into these potentially important genes and metabolites.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Mingyang Sun
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
7
|
Yuan H, Zhang W, Jin S, Jiang S, Xiong Y, Chen T, Gong Y, Qiao H, Fu H. Transcriptome analysis provides novel insights into the immune mechanisms of Macrobrachium nipponense during molting. FISH & SHELLFISH IMMUNOLOGY 2022; 131:454-469. [PMID: 36257556 DOI: 10.1016/j.fsi.2022.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Tianyong Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
8
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
9
|
Tandem Mass Tagging-Based Quantitative Proteomics Analysis Reveals Damage to the Liver and Brain of Hypophthalmichthys molitrix Exposed to Acute Hypoxia and Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11030589. [PMID: 35326239 PMCID: PMC8945220 DOI: 10.3390/antiox11030589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aquaculture environments frequently experience hypoxia and subsequent reoxygenation conditions, which have significant effects on hypoxia-sensitive fish populations. In this study, hepatic biochemical activity indices in serum and the content of major neurotransmitters in the brain were altered markedly after acute hypoxia and reoxygenation exposure in silver carp (Hypophthalmichthys molitrix). Proteomics analysis of the liver showed that a number of immune-related and cytoskeletal organization-related proteins were downregulated, the ferroptosis pathway was activated, and several antioxidant molecules and detoxifying enzymes were upregulated. Proteomics analysis of the brain showed that somatostatin-1A (SST1A) was upregulated, dopamine-degrading enzyme catechol O methyltransferase (COMT) and ferritin, heavy subunit (FerH) were downregulated, and the levels of proteins involved in the nervous system were changed in different ways. In conclusion, these findings highlight that hypoxia–reoxygenation has potential adverse effects on growth, locomotion, immunity, and reproduction of silver carp, and represents a serious threat to liver and brain function, possibly via ferroptosis, oxidative stress, and cytoskeleton destruction in the liver, and abnormal expression of susceptibility genes for neurodegenerative disorders in the brain. Our present findings provide clues to the mechanisms of hypoxia and reoxygenation damage in the brain and liver of hypoxia-sensitive fish. They could also be used to develop methods to reduce hypoxia or reoxygenation injury to fish.
Collapse
|