1
|
Milena E, Maurizio M. Exploring the Cardiovascular Benefits of Extra Virgin Olive Oil: Insights into Mechanisms and Therapeutic Potential. Biomolecules 2025; 15:284. [PMID: 40001586 PMCID: PMC11852600 DOI: 10.3390/biom15020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, driven by complex interactions among genetic, environmental, and lifestyle factors, with diet playing a pivotal role. Extra Virgin Olive Oil (EVOO), a cornerstone of the Mediterranean diet (MedDiet), is a plant-based fat that has garnered attention for its robust cardiovascular benefits, which are attributed to its unique composition of monounsaturated fatty acids (MUFAs), particularly oleic acid (OA); and bioactive polyphenols, such as Hydroxytyrosol (HT) and oleocanthal. These compounds collectively exert antioxidant, anti-inflammatory, vasodilatory, and lipid-modulating effects. Numerous clinical and preclinical studies have demonstrated that EVOO's properties reduce major modifiable cardiovascular risk factors, including hypertension, dyslipidemia, obesity, and type 2 diabetes. EVOO also promotes endothelial function by increasing nitric oxide (NO) bioavailability, thus favoring vasodilation, lowering blood pressure (BP), and supporting vascular integrity. Furthermore, it modulates biomarkers of cardiovascular health, such as C-reactive protein, low-density lipoprotein (LDL) cholesterol, and NT-proBNP, aligning with improved hemostatic balance and reduced arterial vulnerability. Emerging evidence highlights its interaction with gut microbiota, further augmenting its cardioprotective effects. This review synthesizes current evidence, elucidating EVOO's multifaceted mechanisms of action and therapeutic potential. Future directions emphasize the need for advanced extraction techniques, nutraceutical formulations, and personalized dietary recommendations to maximize its health benefits. EVOO represents a valuable addition to dietary strategies aimed at reducing the global burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Esposito Milena
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Mandalà Maurizio
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
2
|
Falbo F, Carullo G, Panti A, Spiga O, Gianibbi B, Ahmed A, Campiani G, Ramunno A, Aiello F, Fusi F. Exploring the chemical space around chrysin to develop novel vascular Ca V1.2 channel blockers, promising vasorelaxant agents. Arch Pharm (Weinheim) 2024; 357:e2400536. [PMID: 39239992 DOI: 10.1002/ardp.202400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
The flavonoid chrysin is an effective vascular CaV1.2 channel blocker. The aim of this study was to explore the chemical space around chrysin to identify the structural features that can be modified to develop novel and more effective blockers. Four derivatives (Chrysin 1-4) were synthesised and a functional, electrophysiology and molecular docking approach was pursued to assess their binding mode to CaV1.2 channels and their activity in vascular preparations. Methylation of the 5- and 7-OH of the chrysin backbone caused a marked reduction of the Ca2+ antagonistic potency and efficacy. However, C-8 derivatives showed biophysical features similar to those of the parent compound and, like nicardipine, bound with high affinity to and stabilised the CaV1.2 channel in its inactivated state. The vasorelaxant effects of the four derivatives appeared vessel-specific, addressing the molecules' derivatization towards different targets. In conclusion, the scaffold of chrysin may be considered a valuable starting point for the development of innovative vascular CaV1.2 channel blockers.
Collapse
Affiliation(s)
- Federica Falbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Gabriele Carullo
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Alice Panti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Beatrice Gianibbi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Carullo G, Borghini F, Fusi F, Saponara S, Fontana A, Pozzetti L, Fedeli R, Panti A, Gorelli B, Aquino G, Basilicata MG, Pepe G, Campiglia P, Biagiotti S, Gemma S, Butini S, Pianezze S, Loppi S, Cavaglioni A, Perini M, Campiani G. Traceability and authentication in agri-food production: A multivariate approach to the characterization ofthe Italian food excellence elephant garlic (Allium ampeloprasum L.), a vasoactive nutraceutical. Food Chem 2024; 444:138684. [PMID: 38359701 DOI: 10.1016/j.foodchem.2024.138684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A research platform for food authentication was set up by combining stable isotope ratio analysis, metabolomics by gas and liquid mass-spectrometry and NMR investigations, chemometric analyses for food excellences. This multi-analytical approach was tested on samples of elephant garlic (Allium ampeloprasum L.), a species belonging to the same genus of common garlic (Allium ampeloprasum L.), mainly produced in southern Tuscany-(Allium ampeloprasum). The isotopic composition allowed the product to be geographically characterized. Flavonoids, like (+)-catechin, cinnamic acids, quercetin glycosides were identified. The samples showed also a significant amount of dipeptides, sulphur-containing metabolites and glutathione, the latter of which could be considered a molecular marker of the analyzed elephant garlic. For nutraceutical profiling to reach quality labels, extracts were investigated in specific biological assays, displaying interesting vasorelaxant properties in rat aorta by mediating nitric oxide release from the endothelium and exhibited positive inotropic and negative chronotropic effects in rat perfused heart.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; BioAgryLab, University of Siena, 53100 Siena, Italy.
| | - Francesca Borghini
- ISVEA Srl, Istituto per lo Sviluppo Viticolo Enologico e Agroindustriale, 53036 Poggibonsi(SI), Italy.
| | - Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Simona Saponara
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Anna Fontana
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Luca Pozzetti
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Riccardo Fedeli
- BioAgryLab, University of Siena, 53100 Siena, Italy; Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Alice Panti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy.
| | | | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy.
| | - Stefano Biagiotti
- Telematic University Pegaso, Piazza Trieste e Trento, 48 -80132 Napoli, Italy.
| | - Sandra Gemma
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; BioAgryLab, University of Siena, 53100 Siena, Italy.
| | - Stefania Butini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; BioAgryLab, University of Siena, 53100 Siena, Italy.
| | - Silvia Pianezze
- Experimental and Technological Services Department, Fondazione Edmund Mach, 38098 San Michele all'Adige (TN), Italy.
| | - Stefano Loppi
- BioAgryLab, University of Siena, 53100 Siena, Italy; Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Alessandro Cavaglioni
- ISVEA Srl, Istituto per lo Sviluppo Viticolo Enologico e Agroindustriale, 53036 Poggibonsi(SI), Italy.
| | - Matteo Perini
- Experimental and Technological Services Department, Fondazione Edmund Mach, 38098 San Michele all'Adige (TN), Italy.
| | - Giuseppe Campiani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; BioAgryLab, University of Siena, 53100 Siena, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran.
| |
Collapse
|
4
|
Esposito M, Gatto M, Cipolla MJ, Bernstein IM, Mandalà M. Dilation of Pregnant Rat Uterine Arteries with Phenols from Extra Virgin Olive Oil Is Endothelium-Dependent and Involves Calcium and Potassium Channels. Cells 2024; 13:619. [PMID: 38607058 PMCID: PMC11011993 DOI: 10.3390/cells13070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.
Collapse
Affiliation(s)
- Milena Esposito
- Department of Biology, Ecology & Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (M.E.); (M.G.)
| | - Mariacarmela Gatto
- Department of Biology, Ecology & Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (M.E.); (M.G.)
| | - Marilyn J. Cipolla
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA;
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA;
| | - Ira M. Bernstein
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology & Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (M.E.); (M.G.)
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA;
| |
Collapse
|
5
|
Soltani M, Fotovat R, Sharifi M, Ahmadian Chashmi N, Behmanesh M. In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:30-39. [PMID: 38322161 PMCID: PMC10839140 DOI: 10.30476/ijms.2023.94805.2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/26/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2024]
Abstract
Background Herbal medicines are the preferred anticancer agents due to their lower cytotoxic effects on healthy cells. Plant lignans play an important role in treating various diseases, especially cancer. The present study aimed to evaluate the effect of podophyllotoxin, pinoresinol, and lariciresinol on cellular toxicity and inducing apoptosis in fibroblasts, HEK-293, and SkBr3 cell lines. Methods An in vitro study was conducted from 2017 to 2019 at the Faculty of Biological Sciences, Tarbiat Modares University (Tehran, Iran). The cell lines were treated for 24 and 48 hours with different concentrations of lignans. Cell viability and apoptosis were examined using MTT and flow cytometry, respectively. Expression levels of cell cycle and apoptosis regulator genes were determined using quantitative real-time polymerase chain reaction. Data were analyzed using a two-way analysis of variance followed by Tukey's HSD test. P<0.05 was considered statistically significant. Results Podophyllotoxin significantly increased apoptosis in fibroblast cells compared to pinoresinol and lariciresinol (P<0.001). The percentage of cell viability of fibroblast cells treated for 48 hours with pinoresinol, lariciresinol, and podophyllotoxin was reduced by 49%, 47%, and 36%, respectively. Treatment with pinoresinol and lariciresinol significantly overexpressed pro-apoptotic genes and underexpressed anti-apoptotic genes in SkBr3 cells (P<0.001). SkBr3 cells treated with lariciresinol significantly reduced gene expression (P<0.001). Conclusion Pinoresinol and lariciresinol can potentially be used as new therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mona Soltani
- Department of Plant Production and Genetics, School of Agriculture, University of Zanjan, Zanjan, Iran
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Fotovat
- Department of Plant Production and Genetics, School of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehrdad Behmanesh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Sguizzato M, Ferrara F, Baraldo N, Bondi A, Guarino A, Drechsler M, Valacchi G, Cortesi R. Bilosomes and Biloparticles for the Delivery of Lipophilic Drugs: A Preliminary Study. Antioxidants (Basel) 2023; 12:2025. [PMID: 38136145 PMCID: PMC10741235 DOI: 10.3390/antiox12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, bile acid-based vesicles and nanoparticles (i.e., bilosomes and biloparticles) are studied to improve the water solubility of lipophilic drugs. Ursodeoxycholic acid, sodium cholate, sodium taurocholate and budesonide were used as bile acids and model drugs, respectively. Bilosomes and biloparticles were prepared following standard protocols with minor changes, after a preformulation study. The obtained systems showed good encapsulation efficiency and dimensional stability. Particularly, for biloparticles, the increase in encapsulation efficiency followed the order ursodeoxycholic acid < sodium cholate < sodium taurocholate. The in vitro release of budesonide from both bilosytems was performed by means of dialysis using either a nylon membrane or a portion of Wistar rat small intestine and two receiving solutions (i.e., simulated gastric and intestinal fluids). Both in gastric and intestinal fluid, budesonide was released from bilosystems more slowly than the reference solution, while biloparticles showed a significant improvement in the passage of budesonide into aqueous solution. Immunofluorescence experiments indicated that ursodeoxycholic acid bilosomes containing budesonide are effective in reducing the inflammatory response induced by glucose oxidase stimuli and counteract ox-inflammatory damage within intestinal cells.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Nada Baraldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Annunziata Guarino
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul S02447, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
7
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. The Potential of Natural Oils to Improve Inflammatory Bowel Disease. Nutrients 2023; 15:nu15112606. [PMID: 37299569 DOI: 10.3390/nu15112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder that includes ulcerative colitis (UC) and Crohn's disease (CD), the exact cause of which is still unknown. Numerous studies have confirmed that diet is one of the major environmental factors associated with IBD, as it can regulate the gut microbiota and reduce inflammation and oxidative stress. Since the consumption of oil is essential in the diet, improving IBD through oil has potential. In this article, we first briefly reviewed the current treatment methods for IBD and introduce the role of natural oils in improving inflammatory diseases. We then focused on the recent discovery of the role of natural oils in the prevention and treatment of IBD and summarized their main mechanisms of action. The results showed that the anti-inflammatory activity of oils derived from different plants and animals has been validated in various experimental animal models. These oils are capable of improving the intestinal homeostasis in IBD animal models through multiple mechanisms, including modulation of the gut microbiota, protection of the intestinal barrier, reduction in colonic inflammation, improvement in oxidative stress levels in the intestine, and regulation of immune homeostasis. Therefore, dietary or topical use of natural oils may have potential therapeutic effects on IBD. However, currently, only a few clinical trials support the aforementioned conclusions. This review emphasized the positive effects of natural oils on IBD and encouraged more clinical trials to provide more reliable evidence on the improvement of human IBD by natural oils as functional substances.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
8
|
Zipori I, Yermiyahu U, Dag A, Erel R, Ben‐Gal A, Quan L, Kerem Z. Effect of macronutrient fertilization on olive oil composition and quality under irrigated, intensive cultivation management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:48-56. [PMID: 35794785 PMCID: PMC9796098 DOI: 10.1002/jsfa.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Intensive olive (Olea europaea L.) orchards are fertilized, mostly with the macronutrients nitrogen (N), phosphorus (P) and potassium (K). The effects of different application levels of these nutrients on olive oil composition and quality were studied over 6 years in a commercial intensively cultivated 'Barnea' olive orchard in Israel. RESULTS Oil quality and composition were affected by N, but not P or K availability. Elevated N levels increased free fatty acid content and reduced polyphenol level in the oil. Peroxide value was not affected by N, P or K levels. The relative concentrations of palmitoleic, linoleic and linolenic fatty acids increased with increasing levels of N application, whereas that of oleic acid, monounsaturated-to-polyunsaturated fatty acid ratio and oleic-to-linoleic ratio decreased. CONCLUSION These results indicate that intensive olive orchard fertilization should be carried out carefully, especially where N application is concerned, to avoid a decrease in oil quality due to over-fertilization. Informed application of macronutrients requires leaf and fruit analyses to establish good agricultural practices, especially in view of the expansion of olive cultivation to new agricultural regions and soils. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Isaac Zipori
- Agricultural Research Organization – Volcani Institute, Gilat Research CenterIsrael
| | - Uri Yermiyahu
- Agricultural Research Organization – Volcani Institute, Gilat Research CenterIsrael
| | - Arnon Dag
- Agricultural Research Organization – Volcani Institute, Gilat Research CenterIsrael
| | - Ran Erel
- Agricultural Research Organization – Volcani Institute, Gilat Research CenterIsrael
| | - Alon Ben‐Gal
- Agricultural Research Organization – Volcani Institute, Gilat Research CenterIsrael
| | - Liu Quan
- College of Agronomy, Sichuan Agricultural UniversityChengduChina
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Zohar Kerem
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
9
|
Carullo G, Saponara S, Ahmed A, Gorelli B, Mazzotta S, Trezza A, Gianibbi B, Campiani G, Fusi F, Aiello F. Novel Labdane Diterpenes-Based Synthetic Derivatives: Identification of a Bifunctional Vasodilator That Inhibits Ca V1.2 and Stimulates K Ca1.1 Channels. Mar Drugs 2022; 20:md20080515. [PMID: 36005518 PMCID: PMC9410420 DOI: 10.3390/md20080515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Sesquiterpenes such as leucodin and the labdane-type diterpene manool are natural compounds endowed with remarkably in vitro vasorelaxant and in vivo hypotensive activities. Given their structural similarity with the sesquiterpene lactone (+)-sclareolide, this molecule was selected as a scaffold to develop novel vasoactive agents. Functional, electrophysiology, and molecular dynamics studies were performed. The opening of the five-member lactone ring in the (+)-sclareolide provided a series of labdane-based small molecules, promoting a significant in vitro vasorelaxant effect. Electrophysiology data identified 7 as a CaV1.2 channel blocker and a KCa1.1 channel stimulator. These activities were also confirmed in the intact vascular tissue. The significant antagonism caused by the CaV1.2 channel agonist Bay K 8644 suggested that 7 might interact with the dihydropyridine binding site. Docking and molecular dynamic simulations provided the molecular basis of the CaV1.2 channel blockade and KCa1.1 channel stimulation produced by 7. Finally, 7 reduced coronary perfusion pressure and heart rate, while prolonging conduction and refractoriness of the atrioventricular node, likely because of its Ca2+ antagonism. Taken together, these data indicate that the labdane scaffold represents a valuable starting point for the development of new vasorelaxant agents endowed with negative chronotropic properties and targeting key pathways involved in the pathophysiology of hypertension and ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sarah Mazzotta
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Beatrice Gianibbi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence: (F.F.); (F.A.)
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edif. Polifunzionale, 87036 Arcavacata di Rende, Italy
- Correspondence: (F.F.); (F.A.)
| |
Collapse
|
10
|
Olive Oil Antioxidants. Antioxidants (Basel) 2022; 11:antiox11050996. [PMID: 35624859 PMCID: PMC9137961 DOI: 10.3390/antiox11050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
|