1
|
Cheah LT, Hindle MS, Khalil JS, Duval C, Unsworth AJ, Naseem KM. Platelet Reactive Oxygen Species, Oxidised Lipid Stress, Current Perspectives, and an Update on Future Directions. Cells 2025; 14:500. [PMID: 40214454 PMCID: PMC11987991 DOI: 10.3390/cells14070500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Blood platelets are anucleate cells that play a vital role in haemostasis, innate immunity, angiogenesis, and wound healing. However, the inappropriate activation of platelets also contributes to vascular inflammation, atherogenesis, and thrombosis. Platelet activation is a highly complex receptor-mediated process that involves a multitude of signalling intermediates in which Reactive Oxygen Species (ROS) are proposed to play an important role. However, like for many cells, changes in the balance of ROS generation and/or scavenging in disease states may lead to the adoption of maladaptive platelet phenotypes. Here, we review the diverse roles of ROS in platelet function and how ROS are linked to specific platelet activation pathways. We also examine how changes in disease, particularly the plasma oxidised low-density lipoprotein (oxLDL), affect platelet ROS generation and platelet function.
Collapse
Affiliation(s)
- Lih T. Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Matthew S. Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK
| | - Jawad S. Khalil
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Cedric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Amanda J. Unsworth
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| |
Collapse
|
2
|
Liao R, Wang L, Zeng J, Tang X, Huang M, Kantawong F, Huang Q, Mei Q, Huang F, Yang Y, Liao B, Wu A, Wu J. Reactive oxygen species: Orchestrating the delicate dance of platelet life and death. Redox Biol 2025; 80:103489. [PMID: 39764976 PMCID: PMC11759559 DOI: 10.1016/j.redox.2025.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Platelets, which are vital for blood clotting and immunity, need to maintain a delicately balanced relationship between generation and destruction. Recent studies have highlighted that reactive oxygen species (ROS), which act as second messengers in crucial signaling pathways, are crucial players in this dance. This review explores the intricate connection between ROS and platelets, highlighting their dual nature. Moderate ROS levels act as potent activators, promoting megakaryocyte (MK) differentiation, platelet production, and function. They enhance platelet binding to collagen, increase coagulation, and directly trigger cascades for thrombus formation. However, this intricate role harbors a double-edged sword. Excessive ROS unleash its destructive potential, triggering apoptosis and reducing the lifespan of platelets. High levels can damage stem cells and disrupt vital redox-dependent signaling, whereas uncontrolled activation promotes inappropriate clotting, leading to thrombosis. Maintaining a precise balance of ROS within the hematopoietic microenvironment is paramount for optimal platelet homeostasis. While significant progress has been made, unanswered questions remain concerning specific ROS signaling pathways and their impact on platelet disorders. Addressing these questions holds the key to unlocking the full potential of ROS-based therapies for treating platelet-related diseases such as thrombocytopenia and thrombosis. This review aims to contribute to this ongoing dialog and inspire further exploration of this exciting field, paving the way for novel therapeutic strategies that harness the benefits of ROS while mitigating their dangers.
Collapse
Affiliation(s)
- Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Zeng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qianqian Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Sun M, Lu Z, Chen WM, Lv S, Fu N, Yang Y, Wang Y, Miao M, Wu SY, Zhang J. N-acetylcysteine therapy reduces major adverse cardiovascular events in patients with type 2 diabetes mellitus. Atherosclerosis 2025; 402:119117. [PMID: 39903949 DOI: 10.1016/j.atherosclerosis.2025.119117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Effective preventive strategies for major adverse cardiovascular events (MACE) in T2DM patients are limited. Recent studies have explored the cardiovascular benefits of N-Acetylcysteine (NAC), an antioxidant with endothelial protective properties. This study investigates the long-term effects of NAC on MACE risk in T2DM patients, focusing on its potential as an adjunctive therapy. METHODS This population-based cohort study used data from Taiwan's National Health Insurance Research Database (NHIRD) and included 46,718 T2DM patients diagnosed between 2008 and 2018, with follow-up until December 31, 2021. Propensity score matching (PSM) ensured balanced comparisons between NAC users and non-users. Cox regression and time-dependent Cox hazards models assessed MACE risk, adjusting for multiple covariates. RESULTS In the matched cohort of 23,359 NAC users and 23,359 non-users, NAC users had a significantly lower incidence of MACE (41.74 % vs. 46.87 %, P < .0001). Adjusted Hazard Ratios (aHRs) indicated a consistent protective effect of NAC against overall MACE (aHR: 0.84; 95 % CI: 0.81-0.86, P < .0001). Higher cumulative defined daily doses (cDDD) of NAC correlated with reduced MACE risk, with the highest quartile (Q4) showing an aHR of 0.61 (95 % CI: 0.58-0.64, P < .0001). CONCLUSION This study underscores the significant reduction in MACE risk among T2DM patients with long-term NAC therapy. Notably, the findings emphasize NAC's dose-dependent effectiveness in diminishing MACE incidence, indicating its potential as a valuable adjunctive therapy for managing cardiovascular risk in T2DM patients.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhongyuan Lu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Shuang Lv
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Management, College of Management, Fo Guang University, Yilan, Taiwan.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Li YL, Wang G, Wang BW, Li YH, Ma YX, Huang Y, Yan WT, Xie P. The potential treatment of N-acetylcysteine as an antioxidant in the radiation-induced heart disease. Cardiovasc Diagn Ther 2024; 14:509-524. [PMID: 39263473 PMCID: PMC11384455 DOI: 10.21037/cdt-24-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/11/2024] [Indexed: 09/13/2024]
Abstract
Background Radiation-induced heart disease (RIHD) is a serious complication of thoracic tumor radiotherapy that substantially affects the quality of life of cancer patients. Oxidative stress plays a pivotal role in the occurrence and progression of RIHD, which prompted our investigation of an innovative approach for treating RIHD using antioxidant therapy. Methods We used 8-week-old male Sprague-Dawley (SD) rats as experimental animals and H9C2 cells as experimental cells. N-acetylcysteine (NAC) was used as an antioxidant to treat H9C2 cells after X-ray irradiation in this study. In the present study, the extent of cardiomyocyte damage caused by X-ray exposure was determined, alterations in oxidation/antioxidation levels were assessed, and changes in the expression of genes related to mitochondria were examined. The degree of myocardial tissue and cell injury was also determined. Dihydroethidium (DHE) staining, reactive oxygen species (ROS) assays, and glutathione (GSH) and manganese superoxide dismutase (Mn-SOD) assays were used to assess cell oxidation/antioxidation. Flow cytometry was used to determine the mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening. High-throughput transcriptome sequencing and bioinformatics analysis were used to elucidate the expression of mitochondria-related genes in myocardial tissue induced by X-ray exposure. Polymerase chain reaction (PCR) was used to verify the expression of differentially expressed genes. Results X-ray irradiation damaged myocardial tissue and cells, resulting in an imbalance of oxidative and antioxidant substances and mitochondrial damage. NAC treatment increased cell counting kit-8 (CCK-8) levels (P=0.02) and decreased lactate dehydrogenase (LDH) release (P=0.02) in cardiomyocytes. It also reduced the level of ROS (P=0.002) and increased the levels of GSH (P=0.04) and Mn-SOD (P=0.01). The mitochondrial membrane potential was restored (P<0.001), and mPTP opening was inhibited (P<0.001). Transcriptome sequencing and subsequent validation analyses revealed a decrease in the expression of mitochondria-related genes in myocardial tissue induced by X-ray exposure, but antioxidant therapy did not reverse the related DNA damage. Conclusions Antioxidants mitigated radiation-induced myocardial damage to a certain degree, but these agents did not reverse the associated DNA damage. These findings provide a new direction for future investigations by our research group, including exploring the treatment of RIHD-related DNA damage.
Collapse
Affiliation(s)
- Yan-Ling Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiovascular Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Bo-Wen Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiovascular Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yong-Hong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yong-Xia Ma
- Department of Cardiovascular Medicine, The Second People's Hospital of Lanzhou City, Lanzhou, China
| | - Yuan Huang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wen-Ting Yan
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Xie
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiovascular Medicine, Gansu Provincial Hospital, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Savini C, Tenti E, Mikus E, Eligini S, Munno M, Gaspardo A, Gianazza E, Greco A, Ghilardi S, Aldini G, Tremoli E, Banfi C. Albumin Thiolation and Oxidative Stress Status in Patients with Aortic Valve Stenosis. Biomolecules 2023; 13:1713. [PMID: 38136584 PMCID: PMC10742097 DOI: 10.3390/biom13121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Recent evidence indicates that reactive oxygen species play an important causative role in the onset and progression of valvular diseases. Here, we analyzed the oxidative modifications of albumin (HSA) occurring on Cysteine 34 and the antioxidant capacity of the serum in 44 patients with severe aortic stenosis (36 patients underwent aortic valve replacement and 8 underwent a second aortic valve substitution due to a degenerated bioprosthetic valve), and in 10 healthy donors (controls). Before surgical intervention, patients showed an increase in the oxidized form of albumin (HSA-Cys), a decrease in the native reduced form (HSA-SH), and a significant reduction in serum free sulfhydryl groups and in the total serum antioxidant activity. Patients undergoing a second valve replacement showed levels of HSA-Cys, free sulfhydryl groups, and total antioxidant activity similar to those of controls. In vitro incubation of whole blood with aspirin (ASA) significantly increased the free sulfhydryl groups, suggesting that the in vivo treatment with ASA may contribute to reducing oxidative stress. We also found that N-acetylcysteine and its amide derivative were able to regenerate HSA-SH. In conclusion, the systemic oxidative stress reflected by high levels of HSA-Cys is increased in patients with aortic valve stenosis. Thiol-disulfide breaking agents regenerate HSA-SH, thus paving the way to the use these compounds to mitigate the oxidative stress occurring in the disease.
Collapse
Affiliation(s)
- Carlo Savini
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy
| | - Elena Tenti
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Elisa Mikus
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Marco Munno
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Anna Gaspardo
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Erica Gianazza
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy;
| | - Elena Tremoli
- GVM Care and Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.S.); (E.T.); (E.M.); (E.T.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy; (S.E.); (M.M.); (A.G.); (E.G.); (A.G.); (S.G.)
| |
Collapse
|
6
|
Eligini S, Munno M, Atlas D, Banfi C. N-acetylcysteine Amide AD4/NACA and Thioredoxin Mimetic Peptides Inhibit Platelet Aggregation and Protect against Oxidative Stress. Antioxidants (Basel) 2023; 12:1395. [PMID: 37507934 PMCID: PMC10376080 DOI: 10.3390/antiox12071395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In the present study, we tested the effect of small-molecular-weight redox molecules on collagen-induced platelet aggregation. We used N-acetylcysteine amide (AD4/NACA), the amide form of N-acetylcysteine (NAC), a thiol antioxidant with improved lipophilicity and bioavailability compared to NAC, and the thioredoxin-mimetic (TXM) peptides, TXM-CB3, TXM-CB13, and TXM-CB30. All compounds significantly inhibited platelet aggregation induced by collagen, with TXM-peptides and AD4 being more effective than NAC. The levels of TxB2 and 12-HETE, the main metabolites derived from the cyclooxygenase and lipoxygenase pathways following platelet activation, were significantly reduced in the presence of AD4, TXM peptides, or NAC, when tested at the highest concentration (0.6 mM). The effects of AD4, TXM-peptides, and NAC were also tested on the clotting time (CT) of whole blood. TXM-CB3 and TXM-CB30 showed the greatest increase in CT. Furthermore, two representative compounds, TXM-CB3 and NAC, showed an increase in the anti-oxidant free sulfhydryl groups of plasma detected via Ellman's method, suggesting a contribution of plasma factors to the antiaggregating effects. Our results suggest that these small-molecular-weight redox peptides might become useful for the prevention and/or treatment of oxidative stress conditions associated with platelet activation.
Collapse
Affiliation(s)
- Sonia Eligini
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, 20138 Milan, Italy
| | - Marco Munno
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, 20138 Milan, Italy
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, 20138 Milan, Italy
| |
Collapse
|
7
|
Dong H, Li H, Fang L, Zhang A, Liu X, Xue F, Chen Y, Liu W, Chi Y, Wang W, Sun T, Ju M, Dai X, Yang R, Fu R, Zhang L. Increased reactive oxygen species lead to overactivation of platelets in essential thrombocythemia. Thromb Res 2023; 226:18-29. [PMID: 37087805 DOI: 10.1016/j.thromres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Platelet function, rather than platelet count, plays a crucial role in thrombosis in essential thrombocythemia (ET). However, little is known about the abnormal function of platelets in ET. Here, we investigated the functional characteristics of platelets in ET hemostasis to explore the causes of ET platelet dysfunction and new therapeutic strategies for ET. MATERIALS AND METHODS We analyzed platelet aggregation, activation, apoptosis, and reactive oxygen species (ROS) in ET patients and JAK2V617F-positive ET-like mice. The effects of ROS on platelet function and the underlying mechanism were investigated by inhibiting ROS using N-acetylcysteine (NAC). RESULTS Platelet aggregation, activation, apoptosis, ROS, and clot retraction were elevated in ET. No significant differences were observed between ET patients with JAK2V617F or CALR mutations. Increased ROS activated the JAK-STAT pathway, which may further influence platelet function. Inhibition of platelet ROS by NAC reduced platelet aggregation, activation, and apoptosis, and prolonged bleeding time. Furthermore, NAC treatment reduced platelet count in ET-like mice by inhibiting platelet production from megakaryocytes. CONCLUSIONS Elevated ROS in ET platelets resulted in enhanced platelet activation, function and increased risk of thrombosis. NAC offers a potential therapeutic strategy for reducing platelet count.
Collapse
Affiliation(s)
- Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
8
|
Sex Differences in X-ray-Induced Endothelial Damage: Effect of Taurine and N-Acetylcysteine. Antioxidants (Basel) 2022; 12:antiox12010077. [PMID: 36670939 PMCID: PMC9854489 DOI: 10.3390/antiox12010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation (IR) can induce some associated pathological conditions due to numerous cell damages. The influence of sex is scarcely known, and even less known is whether the effect of antioxidants is sex-dependent. Given the increased use of IR, we investigated whether male human umbilical vein endothelial cells (MHUVECs) and female human umbilical vein endothelial cells (FHUVECs) respond differently to IR exposure and whether the antioxidants 10 mM taurine (TAU) and 5 mM N-acetylcysteine (NAC) can prevent IR-induced damage in a sex-dependent way. In untreated cells, sex differences were observed only during autophagy, which was higher in FHUVECs. In non-irradiated cells, preincubation with TAU and NAC did not modify viability, lactate dehydrogenase (LDH) release, migration, or autophagy, whereas only NAC increased malondialdehyde (MDA) levels in FHUVECs. X-ray irradiation increased LDH release and reduced viability and migration in a sex-independent manner. TAU and NAC did not affect viability while reduced LDH release in irradiated cells: they have the same protective effect in FHUVECs, while, TAU was more protective than NAC in male cells.. Moreover, TAU and NAC significantly promoted the closure of wounds in both sexes in irradiated cells, but NAC was more effective at doing this in FHUVECs. In irradiated cells, TAU did not change autophagy, while NAC attenuated the differences between the sexes. Finally, NAC significantly decreased MDA in MHUVECs and increased MDA in FHUVECs. In conclusion, FHUVECs appear to be more susceptible to IR damage, and the effects of the two antioxidants present some sex differences, suggesting the need to study the influence of sex in radiation mitigators.
Collapse
|
9
|
N-Acetylcysteine Regenerates In Vivo Mercaptoalbumin. Antioxidants (Basel) 2022; 11:antiox11091758. [PMID: 36139832 PMCID: PMC9495570 DOI: 10.3390/antiox11091758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
Human serum albumin (HSA) represents the most abundant plasma protein, with relevant antioxidant activity due to the presence of the sulfhydryl group on cysteine at position 34 (Cys34), the latter being one of the major target sites for redox-dependent modifications leading to the formation of mixed disulfide linkages with low molecular weight thiols. Thiolated forms of HSA (Thio-HSA) may be useful as markers of an unbalanced redox state and as a potential therapeutic target. Indeed, we have previously reported that albumin Cys34 can be regenerated in vitro by N-Acetylcysteine (NAC) through a thiol-disulfide breaking mechanism, with a full recovery of the HSA antioxidant and antiplatelet activities. With this case study, we aimed to assess the ability of NAC to regenerate native mercaptoalbumin (HSA-SH) and the plasma antioxidant capacity in subjects with redox unbalance, after oral and intravenous administration. A placebo-controlled crossover study, single-blinded, was performed on six hypertensive subjects, randomized into two groups, on a one-to-one basis with NAC (600 mg/die) or a placebo, orally and intravenously administered. Albumin isoforms, HSA-SH, Thio-HSA, and glutathione levels were evaluated by means of mass spectrometry. The plasma antioxidant activity was assessed by a fluorimetric assay. NAC, orally administered, significantly decreased the Thio-HSA levels in comparison with the pre-treatment conditions (T0), reaching the maximal effect after 60 min (−24.7 ± 8%). The Thio-HSA reduction was accompanied by a concomitant increase in the native HSA-SH levels (+6.4 ± 2%). After intravenous administration of NAC, a significant decrease of the Thio-HSA with respect to the pre-treatment conditions (T0) was observed, with a maximal effect after 30 min (−68.9 ± 10.6%) and remaining significant even after 6 h. Conversely, no effect on the albumin isoforms was detected with either the orally or the intravenously administered placebo treatments. Furthermore, the total antioxidant activity of the plasma significantly increased after NAC infusion with respect to the placebo (p = 0.0089). Interestingly, we did not observe any difference in terms of total glutathione corrected for hemoglobin, ruling out any effect of NAC on the intracellular glutathione and supporting its role as a disulfide-breaking agent. This case study confirms the in vitro experiments and demonstrates for the first time that NAC is able to regenerate mercaptoalbumin in vivo, allowing us to hypothesize that the recovery of Cys34 content can modulate in vivo oxidative stress and, hopefully, have an effect in oxidative-based diseases.
Collapse
|
10
|
Sugiyama E, Higashi T, Nakamura M, Mizuno H, Toyo’oka T, Todoroki K. Precolumn Derivatization LC/MS Method for Observation of Efficient Hydrogen Sulfide Supply to the Kidney via d-Cysteine Degradation Pathway. J Pharm Biomed Anal 2022; 222:115088. [DOI: 10.1016/j.jpba.2022.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022]
|