1
|
Jang Y, Oh S, Hall AJ, Zhang Z, Tropea TF, Chen-Plotkin A, Rosenthal LS, Dawson TM, Na CH, Pantelyat AY. Biomarker discovery in progressive supranuclear palsy from human cerebrospinal fluid. Clin Proteomics 2024; 21:56. [PMID: 39342078 PMCID: PMC11437921 DOI: 10.1186/s12014-024-09507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disorder often misdiagnosed as Parkinson's Disease (PD) due to shared symptoms. PSP is characterized by the accumulation of tau protein in specific brain regions, leading to loss of balance, gaze impairment, and dementia. Diagnosing PSP is challenging, and there is a significant demand for reliable biomarkers. Existing biomarkers, including tau protein and neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF), show inconsistencies in distinguishing PSP from other neurodegenerative disorders. Therefore, the development of new biomarkers for PSP is imperative. METHODS We conducted an extensive proteome analysis of CSF samples from 40 PSP patients, 40 PD patients, and 40 healthy controls (HC) using tandem mass tag-based quantification. Mass spectrometry analysis of 120 CSF samples was performed across 13 batches of 11-plex TMT experiments, with data normalization to reduce batch effects. Pathway, interactome, cell-type-specific enrichment, and bootstrap receiver operating characteristic analyses were performed to identify key candidate biomarkers. RESULTS We identified a total of 3,653 unique proteins. Our analysis revealed 190, 152, and 247 differentially expressed proteins in comparisons of PSP vs. HC, PSP vs. PD, and PSP vs. both PD and HC, respectively. Gene set enrichment and interactome analysis of the differentially expressed proteins in PSP CSF showed their involvement in cell adhesion, cholesterol metabolism, and glycan biosynthesis. Cell-type enrichment analysis indicated a predominance of neuronally-derived proteins among the differentially expressed proteins. The potential biomarker classification performance demonstrated that ATP6AP2 (reduced in PSP) had the highest AUC (0.922), followed by NEFM, EFEMP2, LAMP2, CHST12, FAT2, B4GALT1, LCAT, CBLN3, FSTL5, ATP6AP1, and GGH. CONCLUSION Biomarker candidate proteins ATP6AP2, NEFM, and CHI3L1 were identified as key differentiators of PSP from the other groups. This study represents the first large-scale use of mass spectrometry-based proteome analysis to identify cerebrospinal fluid (CSF) biomarkers specific to progressive supranuclear palsy (PSP) that can differentiate it from Parkinson's disease (PD) and healthy controls. Our findings lay a crucial foundation for the development and validation of reliable biomarkers, which will enhance diagnostic accuracy and facilitate early detection of PSP.
Collapse
Affiliation(s)
- Yura Jang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna J Hall
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexander Y Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Palihati N, Tang Y, Yin Y, Yu D, Liu G, Quan Z, Ni J, Yan Y, Qing H. Clusterin is a Potential Therapeutic Target in Alzheimer's Disease. Mol Neurobiol 2024; 61:3836-3850. [PMID: 38017342 DOI: 10.1007/s12035-023-03801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
In recent years, Clusterin, a glycosylated protein with multiple biological functions, has attracted extensive research attention. It is closely associated with the physiological and pathological states within the organism. Particularly in Alzheimer's disease (AD) research, Clusterin plays a significant role in the disease's occurrence and progression. Numerous studies have demonstrated a close association between Clusterin and AD. Firstly, the expression level of Clusterin in the brain tissue of AD patients is closely related to pathological progression. Secondly, Clusterin is involved in the deposition and formation of β-amyloid, which is a crucial process in AD development. Furthermore, Clusterin may affect the pathogenesis of AD through mechanisms such as regulating inflammation, controlling cell apoptosis, and clearing pathological proteins. Therefore, further research on the relationship between Clusterin and AD will contribute to a deeper understanding of the etiology of this neurodegenerative disease and provide a theoretical basis for developing early diagnostic and therapeutic strategies for AD. This also makes Clusterin one of the research focuses as a potential biomarker for AD diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Nazhakaiti Palihati
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Ding Yu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
| |
Collapse
|
3
|
Wang C, Lu Y, He K, Zhao R, Cheng J, Jiang S, Guo M. Comparative proteomics analyses of whey proteins from breastmilk collected from two ethnic groups in northeast China. Food Chem X 2023; 17:100568. [PMID: 36845516 PMCID: PMC9945434 DOI: 10.1016/j.fochx.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The current study aims to investigate differences in whey protein of breastmilk of volunteered mother collected from two ethnic groups (Korean and Han) in China using data-independent acquisition (DIA) based proteomics technique. The total detected 624 proteins were principally allocated to cellular process of biological process (BP), cell and cell part of cell component (CC) and binding of molecular function (MF) according to Gene Ontology (GO) annotation; and carbohydrate metabolism of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Among the 54 differently expressed proteins, 8 were related with immunity. Enrichment data showed that intracellular of GO functions and viral myocarditis of KEGG pathways were most significantly enriched (p < 0.05). Protein-protein interaction (PPI) network suggested that 40S ribosomal protein S27a and 60S ribosomal protein L10a which interacted most with other proteins ranked the top two hub proteins by MCC (Maximal Clique Centrality) method. This study may have guiding role for development of infant formula powder for specific infants of Han or Korean groups according to responding breastmilk composition.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, Jilin University, Changchun, China
| | - Yingcong Lu
- Department of Food Science, Jilin University, Changchun, China
| | - Keyi He
- Department of Food Science, Jilin University, Changchun, China
| | - Ru Zhao
- Department of Food Science, Jilin University, Changchun, China
| | - Jianjun Cheng
- Department of Food Science, Northeast Agriculture University, Harbin, China
| | - Shilong Jiang
- R&D Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA,Corresponding author at: 109 Carrigan Drive, 351Marsh Life Science, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|