1
|
He Y, Hou Y, Li H, He F, Zhou J, Zhang X, Shi J, Xu Z. Identification of a bacteria P450 enzyme from B. megaterium H-1 with vitamin D 3 C-25 hydroxylation capabilities. Enzyme Microb Technol 2025; 184:110578. [PMID: 39729738 DOI: 10.1016/j.enzmictec.2024.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Calcidiol (25(OH)VD3) and calcitriol (1α,25(OH)2VD3) are active vitamin D3 with high medicinal value, which can maintain calcium and phosphorus balance and treat vitamin D deficiency. Microbial synthesis is an important method to produce high-value-added compounds. It can produce active vitamin D3 through the hydroxylation reaction of P450, which can reduce the traditional chemical synthesis steps, and greatly improve the production efficiency and economic benefits. In this work, Bacillus megaterium H-1 was screened for its ability to produce 25(OH)VD3 and 1α,25(OH)2VD3 from vitamin D3. A new highly inducible vitamin D3 hydroxylase CYP109E1-H was identified from B. megaterium H-1 through searching for transcripts with cytochrome P450 structural domains, combining the transcriptome sequencing with functional expression in Bacillus subtilis WB600. Biotransformation in recombinant B. subtilis confirmed that CYP109E1-H has C-25 hydroxylase activity towards vitamin D3. CYP109E1-H is a natural mutant of CYP109E1 with greater stereoselectivity and it is a new vitamin D3 mono-hydroxylase. The cloning and characterization of the CYP109E1-H gene provide useful information on the structural basis for improving the regional and stereoselectivity of the CYP109E gene.
Collapse
Affiliation(s)
- Yulin He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yina Hou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Fan He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingyi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingsong Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Xu C, Huang Y, Li H, Shen Q, Wang F, Shi J, Duan P, Zhang W. A Photoenzymatic Pathway for Gram-Scale Synthesis of 25-Hydroxyvitamin D 3. CHEMSUSCHEM 2025; 18:e202401196. [PMID: 39104184 DOI: 10.1002/cssc.202401196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Vitamin D and its analogues play a crucial role in promoting the well-being of both humans and animals. However, the current synthesis of this vital class of nutrients heavily relies on chemical transformations, which suffer from low step- and atom-efficiency due to lengthy synthetic pathways. To enhance sustainability in the chemical industry, it is necessary to develop alternative synthetic processes. Herein, we present a photoenzymatic approach for synthesizing 25-hydroxyvitamin D3 from 7-dehydrocholesterol. In this sequential synthesis, 7-dehydrocholesterol is initially hydroxylated at the C25 C-H bond, resulting in an 85 % conversion to 25-hydroxyl-7-dehydrocholesterol. Subsequently, by employing photo-irradiation using a monochromatic LED ultraviolet light source in a batch reactor and thermal isomerization, 25-hydroxyvitamin D3 is obtained in satisfactory yield. This photoenzymatic process significantly reduces the need for purification steps and allows for gram-scale synthesis of the target product. Our work offers a selective, efficient, and environmentally friendly method for synthesizing 25-OH-vitamin D3, addressing the limitations of current synthetic approaches.
Collapse
Affiliation(s)
- Caihong Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
3
|
Chen W, Lynch JNC, Bustamante C, Zhang Y, Wong LL. Selective Oxidation of Vitamin D 3 Enhanced by Long-Range Effects of a Substrate Channel Mutation in Cytochrome P450 BM3 (CYP102A1). Chemistry 2024; 30:e202401487. [PMID: 38963680 DOI: 10.1002/chem.202401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Vitamin D deficiency affects nearly half the population, with many requiring or opting for supplements with vitamin D3 (VD3), the precursor of vitamin D (1α,25-dihydroxyVD3). 25-HydroxyVD3, the circulating form of vitamin D, is a more effective supplement than VD3 but its synthesis is complex. We report here the engineering of cytochrome P450BM3 (CYP102A1) for the selective oxidation of VD3 to 25-hydroxyVD3. Long-range effects of the substrate-channel mutation Glu435Ile promoted binding of the VD3 side chain close to the heme, enhancing VD3 oxidation activity that reached 6.62 g of 25-hydroxyVD3 isolated from a 1-litre scale reaction (69.1 % yield; space-time-yield 331 mg/L/h).
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China
| | - Jamie N C Lynch
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Claudia Bustamante
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Yuan Zhang
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China
| | - Luet L Wong
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China
| |
Collapse
|
4
|
García-Domínguez M, Gutiérrez-Del-Río I, Villar CJ, Perez-Gomez A, Sancho-Martinez I, Lombó F. Structural diversification of vitamin D using microbial biotransformations. Appl Microbiol Biotechnol 2024; 108:409. [PMID: 38970663 PMCID: PMC11227467 DOI: 10.1007/s00253-024-13244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Vitamin D deficiencies are linked to multiple human diseases. Optimizing its synthesis, physicochemical properties, and delivery systems while minimizing side effects is of clinical relevance and is of great medical and industrial interest. Biotechnological techniques may render new modified forms of vitamin D that may exhibit improved absorption, stability, or targeted physiological effects. Novel modified vitamin D derivatives hold promise for developing future therapeutic approaches and addressing specific health concerns related to vitamin D deficiency or impaired metabolism, such as avoiding hypercalcemic effects. Identifying and engineering key enzymes and biosynthetic pathways involved, as well as developing efficient cultures, are therefore of outmost importance and subject of intense research. Moreover, we elaborate on the critical role that microbial bioconversions might play in the a la carte design, synthesis, and production of novel, more efficient, and safer forms of vitamin D and its analogs. In summary, the novelty of this work resides in the detailed description of the physiological, medical, biochemical, and epidemiological aspects of vitamin D supplementation and the steps towards the enhanced and simplified industrial production of this family of bioactives relying on microbial enzymes. KEY POINTS: • Liver or kidney pathologies may hamper vitamin D biosynthesis • Actinomycetes are able to carry out 1α- or 25-hydroxylation on vitamin D precursors.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | | | | | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain.
| |
Collapse
|
5
|
Han X, Chen F, Li H, Ge R, Shen Q, Duan P, Sheng X, Zhang W. Reaction engineering blocks ether cleavage for synthesizing chiral cyclic hemiacetals catalyzed by unspecific peroxygenase. Nat Commun 2024; 15:1235. [PMID: 38336996 PMCID: PMC10858125 DOI: 10.1038/s41467-024-45545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Han
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fuqiang Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Qianqian Shen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
6
|
Kosian D, Willistein M, Weßbecher R, Eggers C, May O, Boll M. Highly selective whole-cell 25-hydroxyvitamin D 3 synthesis using molybdenum-dependent C25-steroid dehydrogenase and cyclodextrin recycling. Microb Cell Fact 2024; 23:30. [PMID: 38245746 PMCID: PMC10799449 DOI: 10.1186/s12934-024-02303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The global prevalence of vitamin D (VitD) deficiency associated with numerous acute and chronic diseases has led to strategies to improve the VitD status through dietary intake of VitD-fortified foods and VitD supplementation. In this context, the circulating form of VitD3 (cholecalciferol) in the human body, 25-hydroxy-VitD3 (calcifediol, 25OHVitD3), has a much higher efficacy in improving the VitD status, which has motivated researchers to develop methods for its effective and sustainable synthesis. Conventional monooxygenase-/peroxygenase-based biocatalytic platforms for the conversion of VitD3 to value-added 25OHVitD3 are generally limited by a low selectivity and yield, costly reliance on cyclodextrins and electron donor systems, or by the use of toxic co-substrates. RESULTS In this study, we used a whole-cell approach for biocatalytic 25OHVitD3 synthesis, in which a molybdenum-dependent steroid C25 dehydrogenase was produced in the denitrifying bacterium Thauera aromatica under semi-aerobic conditions, where the activity of the enzyme remained stable. This enzyme uses water as a highly selective VitD3 hydroxylating agent and is independent of an electron donor system. High density suspensions of resting cells producing steroid C25 dehydrogenase catalysed the conversion of VitD3 to 25OHVitD3 using either O2 via the endogenous respiratory chain or externally added ferricyanide as low cost electron acceptor. The maximum 25OHVitD3 titer achieved was 1.85 g L-1 within 50 h with a yield of 99%, which is 2.2 times higher than the highest reported value obtained with previous biocatalytic systems. In addition, we developed a simple method for the recycling of the costly VitD3 solubiliser cyclodextrin, which could be reused for 10 reaction cycles without a significant loss of quality or quantity. CONCLUSIONS The established steroid C25 dehydrogenase-based whole-cell system for the value-adding conversion of VitD3 to 25OHVitD3 offers a number of advantages in comparison to conventional oxygenase-/peroxygenase-based systems including its high selectivity, independence from an electron donor system, and the higher product titer and yield. Together with the established cyclodextrin recycling procedure, the established system provides an attractive platform for large-scale 25OHVitD3 synthesis.
Collapse
Affiliation(s)
- Dennis Kosian
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Weßbecher
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Constantin Eggers
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver May
- DSM Nutritional Products, Koninklijke DSM N.V., Kaiseraugst, 4303, Switzerland
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Li H, Zhang Y, Huang Y, Duan P, Ge R, Han X, Zhang W. A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304605. [PMID: 37870171 PMCID: PMC10700168 DOI: 10.1002/advs.202304605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yalan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Peigao Duan
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Ran Ge
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Xiaofeng Han
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
- National Innovation Center for Synthetic Biotechnology32 West 7th AvenueTianjin300308China
| |
Collapse
|