1
|
Khaldoun H, Settar A, Oularbi Y, Boudjema N, Amokrane A, Djennane N, Tarzaali D. The effect of thyme essential oil on duodenal toxicity induced by subacute exposure to voliam targo® insecticide in male rabbits. Toxicol Rep 2025; 14:101959. [PMID: 40115002 PMCID: PMC11925184 DOI: 10.1016/j.toxrep.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025] Open
Abstract
The increasing use of pesticides has raised concerns about their gastrointestinal toxicity, leading to the search for natural remedies such as thyme essential oil. For that, this study aimed to determine the protective effect of Thymus vulgaris essential oil (TEO) with its chemical composition against Voliam Targo-induced duodenal toxicity. Twenty male rabbits were randomly assigned to four equal groups and treated for 21 consecutive days: Control, VT insecticide group, TEO essential oil group, and VT + TEO group. The main constituent of the essential oil of T. vulgaris was carvacrol 72.9 %. The duodenal injury was assessed using biochemical, histomorphometrical, and immunohistochemical methods. The VT induced an increased number of benign intestinal tissue changes, such as hyperplasia of Brunner glands, disorganization of villi, and infiltration of inflammatory cells. The co-administration of TEO with VT restored the histological organization of the duodenum. In addition, the immunohistochemical examination of the duodenal tissues shows positive immunostaining for the expression of Ki67, P53, and BCL2 proteins in the VT group. Lower expressions were noted in the VT-TEO group compared to the control and TEO groups. The E-cadherin and β-catenin immuno-signals were significantly higher in the essential oil treatment groups' duodenal sections than in the VT group. The study suggested that VT caused duodenal toxicity and that the carvacrol chemotype of TEO could mitigate and alleviate this effect.
Collapse
Affiliation(s)
- Hassina Khaldoun
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Amina Settar
- Department of Agri-food, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | | | - Nouara Boudjema
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Assia Amokrane
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| | - Nacima Djennane
- Department of Pathological Anatomy, Centre Hospitalo-Universitaire Bab El Oued, Algiers, Algeria
| | - Dalila Tarzaali
- Institute of Veterinary Sciences, Faculty of Nature and Life Sciences, University of Blida 1, Route de Soumaa, BP270, Blida, Algeria
| |
Collapse
|
2
|
Khnissi S, Ben Salem I, Bejaoui B, Fattouch S, Mustapha SB, Haj-Kacem R, M'Hamdi N, Martin P, Dattena M, Lassoued N. Antioxidant Capacity of Thyme (Thymus vulgaris) Essential Oil and Its Effect on In Vivo Fertility of Rams Subjected to Testicle Heat Stress. J Anim Physiol Anim Nutr (Berl) 2025; 109:437-448. [PMID: 39467072 PMCID: PMC11919805 DOI: 10.1111/jpn.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
The detrimental effects of hyperthermia on the testes and the protective effect of thyme essential oil against testicular damage induced by this stress in rams were studied. Twenty-four rams of the Barbarine breed with an average weight of 62.5 ± 0.3 kg and an average age of 24 ± 0.6 months. The experiment consisted of inducing localized heat stress on the first group of rams by applying heat bags to both testicles of six rams (G s). The second group underwent the same heat stress on the testes but received orally 100 µL/day/animal of thyme essential oil (G s-he). A positive control did not undergo stress but received thyme essential oil (G he) with the same doses as the (G s-he) group, and the negative control did not undergo either stress or receive the essential oil of thyme (G c). One hundred twenty-eight adult ewes of the same breed divided into four groups of 32 ewes were used to study the effect of different treatments on the in vivo ram's fertility. Ewes are synchronized and we have applied natural mating with oestrus control, the reproduction balance sheet is calculated after lambing. The results showed that tests of heat stress (HS) negatively affect semen quality but did not cause infertility. However, neither tests for heat stress nor treatment with thyme EO significantly affected the haematological profile. The study of the effect of heat stress on the testes on fertility in vivo showed a drop in the number of females who were fertilized at the first oestrus and consequently a drop in fertility. However, the rams that suffered the same stress but were treated with EO thymus recorded an improvement in these parameters.
Collapse
Affiliation(s)
- Samia Khnissi
- Laboratory of Animal and Forage Production, National Institute of Agronomic Research of Tunisia (INRAT) University of Carthage, Tunis, Tunisia
| | - Imène Ben Salem
- Department of Animal Production, Service of Zootechnics and Agricultural Economy National School of Veterinary Medicine Sidi Thabet, University of Manouba, Cité Nasr, Tunisia
| | - Bochra Bejaoui
- Laboratory of Useful Materials, National Institute of Research and Pysico-Chemical Analysis (INRAP), Technopark of Sidi Thabet, Ariana, Tunisia
- Department of Chemistry, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Zarzouna, Tunisia
| | - Sami Fattouch
- EcoChemistry Laboratory, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Souha Ben Mustapha
- EcoChemistry Laboratory, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Rami Haj-Kacem
- Tunisia Polytechnic School, LEGI, University of Carthage, Carthage, Tunisia
| | - Naceur M'Hamdi
- Research Laboratory of Ecosystems and Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, Tunis, Tunisia
| | - Patrick Martin
- Unité Transformations and Agroressources, ULR7519, Université d'Artois-UniLaSalle, Béthune, France
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia Olmedo, Sassari, Italy
| | - Narjess Lassoued
- Laboratory of Animal and Forage Production, National Institute of Agronomic Research of Tunisia (INRAT) University of Carthage, Tunis, Tunisia
| |
Collapse
|
3
|
Nazari M, Shokoohizadeh L, Taheri M. Natural products in the treatment of diabetic foot infection. Eur J Med Res 2025; 30:8. [PMID: 39773682 PMCID: PMC11705749 DOI: 10.1186/s40001-024-02255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic foot infections (DFIs) are a significant complication in diabetes mellitus, leading to increased morbidity, hospitalizations, and healthcare burdens. The growing prevalence of antibiotic-resistant pathogens has reduced the efficacy of conventional treatments, highlighting the need for alternative therapeutic strategies. Natural products, known for their antimicrobial, anti-inflammatory, and wound-healing properties, have garnered attention as potential treatments for DFIs. This review examines key natural compounds, including eugenol, thymol, carvacrol, curcumin, and Aloe vera, and their mechanisms of action in combating diabetic infections. We analyze the antimicrobial efficacy of these compounds, their ability to inhibit biofilm formation, and their role in wound healing. The review also explores challenges in integrating natural products into clinical practice and the potential for their use alongside or in place of traditional antibiotic therapies. Our findings suggest that natural products could play a crucial role in developing sustainable and effective treatment strategies for DFIs, especially in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Mohsen Nazari
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Koc S, Cengiz A, Polat B, Kahraman Kokten S, Gultekin ZN, Caliskan C, Tufan-Cetin O, Cetin H. Evaluating the repellent effects of major essential oil components (Lamiaceae) on brown dog tick Rhipicephalus sanguineus sensu lato) using the larval repellent activity test. Vet Parasitol 2025; 333:110361. [PMID: 39612696 DOI: 10.1016/j.vetpar.2024.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
This research aims to investigate the repellent effects of five major components of plant essential oils (carvacrol, geraniol, cineole, α-pinene, and γ-terpinene) on the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), using the newly developed Larval Repellent Activity Test (LRAT). The components were tested at concentrations of 0.1 %, 0.5 %, 1 %, 2.5 %, and 5 %, with DEET as a positive control. Carvacrol and geraniol exhibited strong repellent effects, with carvacrol showing efficacy comparable to DEET (15 %) at certain concentrations and time points. In contrast, cineole, γ-terpinene, and α-pinene demonstrated moderate to low repellency. The results highlight the potential of using plant-derived components as safer alternatives to synthetic repellents, suggesting that these natural compounds could be developed into effective biocidal products for tick control.
Collapse
Affiliation(s)
- Samed Koc
- Laboratory Animals Application and Research Centre, Akdeniz University, Antalya, Türkiye
| | - Aysegul Cengiz
- Faculty of Science, Department of Biology, Akdeniz University, Antalya, Türkiye
| | - Burak Polat
- Faculty of Science, Department of Biology, Akdeniz University, Antalya, Türkiye
| | | | - Zeynep Nur Gultekin
- Faculty of Science, Department of Biology, Akdeniz University, Antalya, Türkiye
| | - Cansu Caliskan
- Faculty of Science, Department of Biology, Akdeniz University, Antalya, Türkiye
| | - Ozge Tufan-Cetin
- Department of Environmental Protection Technology, Vocational School of Technical Sciences, Akdeniz University, Antalya, Türkiye
| | - Huseyin Cetin
- Faculty of Science, Department of Biology, Akdeniz University, Antalya, Türkiye.
| |
Collapse
|
5
|
Çakır C, Gürkan EH. Enhancing therapeutic effects alginate microencapsulation of thyme and calendula oils using ionic gelation for controlled drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2611-2639. [PMID: 39155301 DOI: 10.1080/09205063.2024.2386220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
This study focuses on encapsulating and characterizing essential oils such as thyme and calendula oils, which are known for their therapeutic properties but are limited in pharmaceutical formulations due to their low water solubility and instability, with alginate microspheres. Alginate presents an excellent option for microencapsulation due to its biocompatibility and biological degradability. The ionic gelation (IG) technique, based on the ionic binding between alginate and divalent cations, allows the formation of hydrogel materials with high water content, mechanical strength, and biocompatibility. The microspheres were characterized using FT-IR, SEM, and swelling analyses. After determining the encapsulation efficiency and drug loading capacity, the microspheres were subjected to dissolution studies under simulated digestion conditions. It was observed that the swelling percentage of the microspheres in simulated gastric fluid (SGF) ranged from ∼15% to 100%, while in simulated intestinal fluid (SIF) it ranged from ∼150% to 325%. Thyme oil, with low viscosity, exhibited higher encapsulation efficiency than marigold oil. The highest encapsulation efficiency was observed in A-TO-2 microspheres, while the highest drug loading capacity was observed in A-TO-5 microspheres. During the examination of the dissolution profiles of the microspheres, dissolution rates ranging from 10.98% to 23.56% in SGF and from 52.44% to 63.20% in SIF were observed.
Collapse
Affiliation(s)
- Cengizhan Çakır
- Faculty of Engineering, Chemical Engineering Department, Ondokuz Mayıs University, Kurupelit Campus, Samsun, Turkey
| | - Elif Hatice Gürkan
- Faculty of Engineering, Chemical Engineering Department, Ondokuz Mayıs University, Kurupelit Campus, Samsun, Turkey
| |
Collapse
|
6
|
Ren Y, You X, Zhu R, Li D, Wang C, He Z, Hu Y, Li Y, Liu X, Li Y. Mutation of Pseudomonas aeruginosa lasI/rhlI diminishes its cytotoxicity, oxidative stress, inflammation, and apoptosis on THP-1 macrophages. Microbiol Spectr 2024; 12:e0414623. [PMID: 39162513 PMCID: PMC11448257 DOI: 10.1128/spectrum.04146-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
The management of Pseudomonas aeruginosa (P. aeruginosa) infections presents a substantial challenge to clinics and public health, emphasizing the urgent need for innovative strategies to address this issue. Quorum sensing (QS) is an intercellular communication mechanism that coordinates bacterial activities involved in various virulence mechanisms, such as acquiring host nutrients, facilitating biofilm formation, enhancing motility, secreting virulence factors, and evading host immune responses, all of which play a crucial role in the colonization and infection of P. aeruginosa. The LasI/R and RhlI/R sub-systems dominate in the QS system of P. aeruginosa. Macrophages play a pivotal role in the host's innate immune response to P. aeruginosa invasion, particularly through phagocytosis as the initial host defense mechanism. This study investigated the effects of P. aeruginosa's QS system on THP-1 macrophages. Mutants of PAO1 with lasI/rhlI deletion, as well as their corresponding complemented strains, were obtained, and significant downregulation of QS-related genes was observed in the mutants. Furthermore, the ΔlasI and ΔlasIΔrhlI mutants exhibited significantly attenuated virulence in terms of biofilm formation, extracellular polymeric substances synthesis, bacterial adhesion, motility, and virulence factors production. When infected with ΔlasI and ΔlasIΔrhlI mutants, THP-1 macrophages exhibited enhanced scavenging ability against the mutants and demonstrated resistance to cytotoxicity, oxidative stress, inflammatory response, and apoptosis induced by the culture supernatants of these mutant strains. These findings offer novel insights into the mechanisms underlying how the lasI/rhlI mutation attenuates cytotoxicity, oxidative stress, inflammation, and apoptosis in macrophages induced by P. aeruginosa.IMPORTANCEP. aeruginosa is classified as one of the ESKAPE pathogens and poses a global public health concern. The QS system of this versatile pathogen contributes to a broad spectrum of virulence, thereby constraining therapeutic options for serious infections. This study illustrated that the lasI/rhlI mutation of the QS system plays a prominent role in attenuating the virulence of P. aeruginosa by affecting bacterial adhesion, biofilm formation, extracellular polymeric substances synthesis, bacterial motility, and virulence factors' production. Notably, THP-1 macrophages infected with mutant strains exhibited increased phagocytic activity in eliminating intracellular bacteria and enhanced resistance to cytotoxicity, oxidative stress, inflammation, and apoptosis. These findings suggest that targeted intervention toward the QS system is anticipated to diminish the pathogenicity of P. aeruginosa to THP-1 macrophages.
Collapse
Affiliation(s)
- Yanying Ren
- Dazhou integrated Traditional Chinese Medicine & Western Medicine Hospital, Dazhou Second People's Hospital, Dazhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojuan You
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Rui Zhu
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Dengzhou Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Chunxia Wang
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Zhiqiang He
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yue Hu
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yifan Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinwei Liu
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yongwei Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
- The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, China
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, China
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108674. [PMID: 38705044 DOI: 10.1016/j.plaphy.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
8
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
9
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
10
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Purza AL, Endres LM. Emerging Insights into the Applicability of Essential Oils in the Management of Acne Vulgaris. Molecules 2023; 28:6395. [PMID: 37687224 PMCID: PMC10489792 DOI: 10.3390/molecules28176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The occurrence of pustules, comedones, nodules, and cysts defines acne vulgaris, a prevalent chronic inflammatory dermatological condition. In the past few decades, essential oils extracted from varied natural sources have acquired recognition due to their potential medicinal applications in acne therapy. However, there is not yet sufficient medical data to fully characterize this interaction. Multiple factors contribute to the development of acne vulgaris, including excessive sebaceous production, inflammatory processes, hyperkeratinization, and infection with Cutibacterium acnes. Essential oils, including oregano, lavender, lemon grass, myrtle, lemon, thyme, eucalyptus, rosemary, and tea tree, have been found to possess anti-inflammatory, antioxidant, and antimicrobial properties, which may target the multifactorial causes of acne. Analytical methods for determining antioxidant potential (i.e., total phenolic content, diphenyl-1-picrylhydrazyl free radical scavenging assay, reducing power assay, ferrous ion chelating activity, thiobarbituric acid reactive species assay, β-carotene bleaching assay, etc.) are essential for the evaluation of these essential oils, and their method optimization is crucial. Further studies could include the development of novel acne treatments incorporating essential oils and an assessment of their efficacy in large clinical trials. In addition, further research is necessary to ascertain the mechanisms of action of essential oils and their optimal doses and safety profiles for optimal implementation in the management of acne vulgaris.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
11
|
Luță EA, Biță A, Moroșan A, Mihaiescu DE, Mihai DP, Popescu L, Bejenaru LE, Bejenaru C, Popovici V, Olaru OT, Gîrd CE. Implications of the Cultivation of Rosemary and Thyme ( Lamiaceae) in Plant Communities for the Development of Antioxidant Therapies. Int J Mol Sci 2023; 24:11670. [PMID: 37511428 PMCID: PMC10380601 DOI: 10.3390/ijms241411670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.
Collapse
Affiliation(s)
- Emanuela-Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Traian Vuia 6, 020956 Bucharest, Romania
| | - Andrei Biță
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania
| | - Alina Moroșan
- Department of Organic Chemistry "Costin Nenițescu", Faculty of Chemical Engineering and Biotechnologies, University of Politehnica, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry "Costin Nenițescu", Faculty of Chemical Engineering and Biotechnologies, University of Politehnica, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Traian Vuia 6, 020956 Bucharest, Romania
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Traian Vuia 6, 020956 Bucharest, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Traian Vuia 6, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
12
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
13
|
Warman DJ, Jia H, Kato H. Effects of Thyme ( Thymus vulgaris L.) Essential Oil on Aging-Induced Brain Inflammation and Blood Telomere Attrition in Chronologically Aged C57BL/6J Mice. Antioxidants (Basel) 2023; 12:1178. [PMID: 37371908 DOI: 10.3390/antiox12061178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronological aging is commonly accompanied by chronic low-grade inflammation (or "inflammaging"), a contributor to the development of age-related chronic diseases. Aging increases oxidative stress that accelerates telomere shortening, leading to cell senescence and the generation of senescence-associated secretory phenotype (SASP) that exacerbates inflammation. Dietary antioxidants may help protect telomeres and attenuate inflammation. Thyme essential oil (TEO), reported for its potency against neuroinflammation, was fed to chronologically aged C57BL/6J mice for 24 weeks. The TEO diet showed notable impacts on the hippocampus, indicated by lower expression of the aging-related gene p16INK4A (p = 0.0783) and significantly lower expression of cyclin D kinase Cdk4 and Cdk6 (p < 0.05) compared to the age-matched control mice. The TEO group also showed significantly lower gene expression of the pro-inflammatory cytokine Il6 (p < 0.05) in the hippocampus and lower Il1b expression in the liver and cerebellum (p < 0.05). In vitro experiments conducted on NIH-3T3 cells expressing SASP revealed the dose-dependent anti-inflammatory activity of TEO. Remarkably, TEO diet-fed mice showed higher survival rates and significantly longer blood telomere lengths than the control mice. Monoterpene antioxidants in TEO, particularly thymol and p-cymene, may primarily contribute to the anti-inflammatory and telomere-protecting activities of TEO.
Collapse
Affiliation(s)
- Dwina Juliana Warman
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Nutrition, School of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado-shi 350-0288, Japan
| |
Collapse
|
14
|
Bakó C, Balázs VL, Kerekes E, Kocsis B, Nagy DU, Szabó P, Micalizzi G, Mondello L, Krisch J, Pethő D, Horváth G. Flowering phenophases influence the antibacterial and anti-biofilm effects of Thymus vulgaris L. essential oil. BMC Complement Med Ther 2023; 23:168. [PMID: 37226152 DOI: 10.1186/s12906-023-03966-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Essential oils are becoming increasingly popular in medicinal applications because of their antimicrobial effect. Thymus vulgaris L. (Lamiaceae) is a well-known and widely cultivated medicinal plant, which is used as a remedy for cold, cough and gastrointestinal symptoms. Essential oil content of thyme is responsible for its antimicrobial activity, however, it has been reported that the chemical composition of essential oils influences its biological activity. In order to explore flowering phenophases influence on the chemical composition of thyme essential oil and its antibacterial and anti-biofilm activity, plant materials were collected at the beginning of flowering, in full bloom and at the end of flowering periods in 2019. METHODS Essential oils from fresh and dried plant materials were distilled and analyzed with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The antibacterial activity was performed by broth microdilution and thin layer chromatography-direct bioautography (TLC-DB) assays and the anti-biofilm effect by crystal violet assay, respectively. Scanning electron microscopy was applied to illustrate the cellular changes of bacterial cells after essential oil treatment. RESULTS Thymol (52.33-62.46%) was the main component in the thyme essential oils. Thyme oil distilled from fresh plant material and collected at the beginning of flowering period exerted the highest antibacterial and anti-biofilm activity against Haemophilus influenzae, H. parainfluenzae and Pseudomonas aeruginosa. CONCLUSION The different flowering periods of Thymus vulgaris influence the antibacterial and anti-biofilm activity of its essential oils, therefore, the collection time has to be taken into consideration and not only the full bloom, but the beginning of flowering period may provide biological active thyme essential oil.
Collapse
Affiliation(s)
- Csongor Bakó
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, H-7624, Hungary
| | - Viktória Lilla Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, H-7624, Hungary
| | - Erika Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, H-7624, Hungary
| | - Dávid U Nagy
- Institute of Geobotany and Plant Ecology, Martin-Luther University, D-06108, Halle, Germany
| | - Péter Szabó
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, H-7624, Hungary
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, 00128, Italy
| | - Judit Krisch
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, H-6724, Hungary
| | - Dóra Pethő
- Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Veszprém, H-8200, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, H-7624, Hungary.
| |
Collapse
|
15
|
Schiavone V, Romasco T, Di Pietrantonio N, Garzoli S, Palmerini C, Di Tomo P, Pipino C, Mandatori D, Fioravanti R, Butturini E, Sabatino M, Baldassarre MPA, Ragno R, Pandolfi A, Di Pietro N. Essential Oils from Mediterranean Plants Inhibit In Vitro Monocyte Adhesion to Endothelial Cells from Umbilical Cords of Females with Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24087225. [PMID: 37108387 PMCID: PMC10138528 DOI: 10.3390/ijms24087225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Essential oils (EOs) are mixtures of volatile compounds belonging to several chemical classes derived from aromatic plants using different distillation techniques. Recent studies suggest that the consumption of Mediterranean plants, such as anise and laurel, contributes to improving the lipid and glycemic profile of patients with diabetes mellitus (DM). Hence, the aim of the present study was to investigate the potential anti-inflammatory effect of anise and laurel EOs (AEO and LEO) on endothelial cells isolated from the umbilical cord vein of females with gestational diabetes mellitus (GDM-HUVEC), which is a suitable in vitro model to reproduce the pro-inflammatory phenotype of a diabetic endothelium. For this purpose, the Gas Chromatographic/Mass Spectrometric (GC-MS) chemical profiles of AEO and LEO were first analyzed. Thus, GDM-HUVEC and related controls (C-HUVEC) were pre-treated for 24 h with AEO and LEO at 0.025% v/v, a concentration chosen among others (cell viability by MTT assay), and then stimulated with TNF-α (1 ng/mL). From the GC-MS analysis, trans-anethole (88.5%) and 1,8-cineole (53.9%) resulted as the major components of AEO and LEO, respectively. The results in C- and GDM-HUVEC showed that the treatment with both EOs significantly reduced: (i) the adhesion of the U937 monocyte to HUVEC; (ii) vascular adhesion molecule-1 (VCAM-1) protein and gene expression; (iii) Nuclear Factor-kappa B (NF-κB) p65 nuclear translocation. Taken together, these data suggest the anti-inflammatory efficacy of AEO and LEO in our in vitro model and lay the groundwork for further preclinical and clinical studies to study their potential use as supplements to mitigate vascular endothelial dysfunction associated with DM.
Collapse
Affiliation(s)
- Valeria Schiavone
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Garzoli
- Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Carola Palmerini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Rossella Fioravanti
- Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37129 Verona, Italy
| | - Manuela Sabatino
- Rome Center for Molecular Design-RCMD, Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy
| | - Rino Ragno
- Rome Center for Molecular Design-RCMD, Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
16
|
Vassiliou E, Awoleye O, Davis A, Mishra S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int J Mol Sci 2023; 24:ijms24086936. [PMID: 37108100 PMCID: PMC10138399 DOI: 10.3390/ijms24086936] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Thyme oil (TO) is derived from the flowers of various plants belonging to the genus Thymus. It has been used as a therapeutic agent since ancient times. Thymus comprises numerous molecular species exhibiting diverse therapeutic properties that are dependent on their biologically active concentrations in the extracted oil. It is therefore not surprising that oils extracted from different thyme plants present different therapeutic properties. Furthermore, the phenophase of the same plant species has been shown to yield different anti-inflammatory properties. Given the proven efficacy of TO and the diversity of its constituents, a better understanding of the interactions of the various components is warranted. The aim of this review is to gather the latest research findings regarding TO and its components with respect to their immunomodulatory properties. An optimization of the various components has the potential to yield more effective thyme formulations with increased potency.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Oreoluwa Awoleye
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Sasmita Mishra
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
17
|
Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A, Szymański Ł. Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 2023; 24:5377. [PMID: 36982453 PMCID: PMC10049680 DOI: 10.3390/ijms24065377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French-American-British classifications.
Collapse
Affiliation(s)
- Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Katarzyna Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | | | - Tino Schenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sławomir Lewicki
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland
| | - Artur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
18
|
Effects of Thymus vulgaris Oil on Sodium Hypochlorite-Induced Damage in Rats. Molecules 2023; 28:molecules28052164. [PMID: 36903410 PMCID: PMC10004012 DOI: 10.3390/molecules28052164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
We aimed to determine the potential damage mechanisms of exposure to widely used sodium hypochlorite (NaOCl) and the effects of Thymus vulgaris on this exposure. Rats were divided into six groups: control, T. vulgaris, 4% NaOCl, 4% NaOCl + T. vulgaris, 15% NaOCl, and 15% NaOCl + T. vulgaris. Serum and lung tissue samples were taken after applying NaOCl and T. vulgaris by inhalation twice a day for 30 min for four weeks. The samples were examined biochemically (TAS/TOS), histopathologically, and immunohistochemically (TNF-α). In serum TOS values, the mean of 15% NaOCl was significantly higher than in 15% NaOCl + T. vulgaris. This was the opposite in terms of serum TAS values. Histopathologically, there was a significant increase in lung injury in 15% NaOCl; significant improvement was observed in 15% NaOCl + T. vulgaris. Immunohistochemically, there was a significant increase in TNF-α expression in both 4% NaOCl and 15% NaOCl; significant decreases were observed in both 4% NaOCl + T. vulgaris and 15% NaOCl + T. vulgaris. The use of sodium hypochlorite, which is harmful to the lungs and is widely used in homes and industries, should be limited. In addition, using T. vulgaris essential oil by inhalation may protect against the harmful effects of sodium hypochlorite.
Collapse
|
19
|
Immune Defences: A View from the Side of the Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010435. [PMID: 36615625 PMCID: PMC9824899 DOI: 10.3390/molecules28010435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The use of essential oils is increasingly being investigated among new therapeutic approaches based on medicinal plants and their extracts. With the wide use of synthetic and semi-synthetic antimicrobial drugs, the spread of drug-resistant clinical isolates has increased, and research is directed towards natural products, such as essential oils, as useful antimicrobial resources. In the context of a prospective infection, we compared the impact of essential oils and common antimicrobial agents on the microbicidal activity of human phagocytes. Here, we present the results of our decades-long investigation into the effectiveness of thyme red oil (26.52% thymol chemotype), tea tree oil (TTO), and Mentha of Pancalieri [(Mentha x piperita (Huds) var. officinalis (Sole), form rubescens (Camus) (Lamiaceae)] essential oils on human polymorphonuclear leukocytes (PMNs) capacity to kill clinical strains of Candida albicans and C. krusei when compared to three antifungal drugs used to treat candidiasis (fluconazole, anidulafungin, and caspofungin) These essential oils demonstrate antifungal drug-like and/or superior efficacy in enhancing intracellular killing by PMNs, even at subinhibitory concentrations. Our results are compared with data in the literature on essential oils and immune system interactions. This comparison would aid in identifying therapeutic solutions to the increasingly prevalent antibiotic resistance as well as filling in any remaining knowledge gaps on the bioactivity of essential oils.
Collapse
|
20
|
Ebani VV, Pieracci Y, Cagnoli G, Bertelloni F, Munafò C, Nardoni S, Pistelli L, Mancianti F. In Vitro Antimicrobial Activity of Thymus vulgaris, Origanum vulgare, Satureja montana and Their Mixture against Clinical Isolates Responsible for Canine Otitis Externa. Vet Sci 2023; 10:vetsci10010030. [PMID: 36669031 PMCID: PMC9864906 DOI: 10.3390/vetsci10010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Otitis externa is a frequent inflammation among dogs, mainly caused by bacteria and yeasts that are often resistant to conventional drugs. The aim of the present study was to evaluate the in vitro antibacterial and antifungal activities of commercial essential oils (EOs) from Origanum vulgare, Satureja montana, and Thymus vulgaris, as well as a mixture of these three components, against 47 clinical bacterial strains (Staphylococcus sp., Streptococcus sp., Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens) and 5 Malassezia pachydermatis strains, previously cultured from the ears of dogs affected by otitis externa. The tested Gram-positive bacteria were sensible to the analysed EOs with MICs ranging from 1.25% (v/v) to <0.0195% (v/v); Gram-negative isolates, mainly P. aeruginosa, were less sensitive with MICs from >10% (v/v) to 0.039% (v/v). M. pachydermatis isolates were sensitive to all EOs with MICs from 4.25% (v/v) to 2% (v/v). However, the mixture was active against all bacterial (except one P. aeruginosa strain) and fungal tested isolates. The three EOs and their mixture seem to be an interesting alternative for treating canine otitis externa when conventional antimicrobials are not active.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, 56121 Pisa, Italy
- Correspondence:
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, 56121 Pisa, Italy
| | - Giulia Cagnoli
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | | | - Chiara Munafò
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Luisa Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, 56121 Pisa, Italy
- Department of Pharmacy, University of Pisa, 56121 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, 56121 Pisa, Italy
| |
Collapse
|
21
|
Liu Y, Yan H, Yu B, He J, Mao X, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Wu A, Chen D. Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants (Basel) 2022; 11:antiox11101947. [PMID: 36290669 PMCID: PMC9598597 DOI: 10.3390/antiox11101947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal disease that involves chronic mucosal or submucosal lesions that affect tissue integrity. Although IBD is not life-threatening, it sometimes causes severe complications, such as colon cancer. The exact etiology of IBD remains unclear, but several risk factors, such as pathogen infection, stress, diet, age, and genetics, have been involved in the occurrence and aggravation of IBD. Immune system malfunction with the over-production of inflammatory cytokines and associated oxidative stress are the hallmarks of IBD. Dietary intervention and medical treatment suppressing abnormal inflammation and oxidative stress are recommended as potential therapies. Thymol, a natural monoterpene phenol that is mostly found in thyme, exhibits multiple biological functions as a potential adjuvant for IBD. The purpose of this review is to summarize current findings on the protective effect of thymol on intestinal health in the context of specific animal models of IBD, describe the role of thymol in the modulation of inflammation, oxidative stress, and gut microbiota against gastrointestinal disease, and discuss the potential mechanism for its pharmacological activity.
Collapse
Affiliation(s)
| | - Hui Yan
- Correspondence: (H.Y.); (D.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kong ASY, Maran S, Yap PSX, Lim SHE, Yang SK, Cheng WH, Tan YH, Lai KS. Anti- and Pro-Oxidant Properties of Essential Oils against Antimicrobial Resistance. Antioxidants (Basel) 2022; 11:antiox11091819. [PMID: 36139893 PMCID: PMC9495521 DOI: 10.3390/antiox11091819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid evolution of antimicrobial resistance (AMR) has remained a major public health issue, reducing the efficacy of antibiotics and increasing the difficulty of treating infections. The discovery of novel antimicrobial agents is urgently needed to overcome the challenges created by AMR. Natural products such as plant extracts and essential oils (EOs) have been viewed as potential candidates to combat AMR due to their complex chemistry that carries inherent pro-oxidant and antioxidant properties. EOs and their constituents that hold pro-oxidant properties can induce oxidative stress by producing reactive oxygen species (ROS), leading to biological damage in target cells. In contrast, the antioxidant properties scavenge free radicals through offsetting ROS. Both pro-oxidant and antioxidant activities in EOs represent a promising strategy to tackle AMR. Thus, this review aimed to discuss how pro-oxidants and antioxidants in EOs may contribute to the mitigation of AMR and provided a detailed description of the challenges and limitations of utilizing them as a means to combat AMR.
Collapse
Affiliation(s)
- Amanda Shen-Yee Kong
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Shun-Kai Yang
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Yong-Hui Tan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, UCSI Heights, 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
- Correspondence:
| |
Collapse
|