1
|
Wang J, Gao S, Cui Y, Liu XZ, Chen XX, Hang CH, Li W. Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. Antioxid Redox Signal 2025. [PMID: 40170638 DOI: 10.1089/ars.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yue Cui
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Wang M, Li M, Jiang Y, Wang S, Yang X, Naseem A, Algradi AM, Hao Z, Guan W, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. Saponins from Astragalus membranaceus (Fisch.) Bge Alleviated Neuronal Ferroptosis in Alzheimer's Disease by Regulating the NOX4/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7725-7740. [PMID: 40119801 DOI: 10.1021/acs.jafc.4c10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system caused by loss of neuronal or myelin function, accompanied by ferroptosis. Astragalus membranaceus (Fisch.) Bge. (A. membranaceus) is one of China's homologous lists of medicines and food, and its active component saponins have neuroprotective effects. This study examines the mechanism of saponins from A. membranaceus (AS) in treating AD. UPLC-Q-TOF-MS analyzed the composition of AS. Ferroptosis models were established to evaluate the anti-AD efficacy. As a result, AS treatment inhibited ferroptosis in SAMP8 mice by restoring iron homeostasis and lipid peroxidation (LPO) balance in the brain, thereby improving cognitive impairment and pathological damage. Mechanistically, AS treatment reduced Fe2+, MDA, and ROS levels and enhanced protein levels of SLC7A11, GPX4, FTH1, and FPN1. NADPH oxidase 4 (NOX4) overexpression revealed that AS treatment inhibited NOX4, thereby reducing NOX4 stability and regulating the NOX4/Nrf2 pathway in erastin-injured HT22 cells and significantly alleviating ferroptosis. Therefore, AS inhibited ferroptosis and improved AD by rebuilding iron homeostasis and LPO balance in the brain. AS has the potential to be a promising candidate medicine for AD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yikai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Xu Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qingshan Chen
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lili Zhang
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| |
Collapse
|
3
|
Song SN, Li HJ, Liang JL, Ren QQ, Li CX, Xu SY. Lentivirus-Mediated Missense Mutation in HtrA1 Leads to Activation of the TGF-β/Smads Pathway and Increased Apoptosis of Mouse Brain Microvascular Endothelial Cells via the Oxidative Stress Pathway. J Integr Neurosci 2024; 23:201. [PMID: 39613464 DOI: 10.31083/j.jin2311201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the possible molecular mechanisms underlying cerebral small vessel disease caused by a missense mutation in the high-temperature serine peptidase A1 gene, HtrA1 (NM_002775.4, Exon4, c.905G>A, p.Arg302Gln). Stable strain models were constructed using wild-type and mutant HtrA1 overexpression lentiviral vectors to infect mouse brain microvascular endothelial cells (bEnd.3 cells). METHODS HtrA1 mRNA and protein expression were analyzed by Western blot and quantitative real-time polymerase chain reaction. Western blot technique was also used to evaluate the expression of transforming growth factor (TGF)-β/Smads-related signaling pathway proteins and the oxidative stress pathway protein nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The level of reactive oxygen species (ROS) was evaluated using dichloro-dihydro-fluorescein diacetate (DCFH-DA) fluorescent probes. RESULTS HtrA1 mRNA and protein expression levels were found to be decreased in mutant cells, whereas the levels of ROS, the TGF-β/Smads proteins, and the caspase3 and cleaved-caspase3 apoptotic proteins were increased. CONCLUSIONS Lentivirus-mediated missense mutation in HtrA1 leads to activation of the TGF-β/Smads pathway and to increased apoptosis of mouse brain microvascular endothelial cells via the oxidative stress pathway. Further in vivo studies are required to explore the connections between different signaling pathways in animals, and to identify potential molecular targets for clinical therapy.
Collapse
Affiliation(s)
- Shi-Na Song
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
- Department of Geriatrics, General Hospital of TISCO, 030001 Taiyuan, Shanxi, China
| | - Hui-Juan Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410000 Changsha, Hunan, China
| | - Jian-Lin Liang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Qian-Qian Ren
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Chang-Xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Boonpraman N, Yi SS. NADPH oxidase 4 (NOX4) as a biomarker and therapeutic target in neurodegenerative diseases. Neural Regen Res 2024; 19:1961-1966. [PMID: 38227522 DOI: 10.4103/1673-5374.390973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
Diseases like Alzheimer's and Parkinson's diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer's disease and Parkinson's disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
Collapse
Affiliation(s)
- Napissara Boonpraman
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Sun Shin Yi
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
- Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, South Korea
- iConnectome, Co., Ltd., Cheonan, South Korea
| |
Collapse
|
5
|
Lu XY, Lv QY, Li QL, Zhang H, Chen CT, Tian HM. Impact of acupuncture on ischemia/reperfusion injury: Unraveling the role of miR-34c-5p and autophagy activation. Brain Res Bull 2024; 215:111031. [PMID: 39002935 DOI: 10.1016/j.brainresbull.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
We have previously reported that the expression of miR-34c-5p was up-regulated during acupuncture treatment in the setting of a cerebral ischemia/reperfusion injury (CIRI), indicating that miR-34c-5p plays an important role in healing from a CIRI-induced brain injury. This study sought to evaluate the effects of acupuncture on miR-34c-5p expression and autophagy in the forward and reverse directions using a rat focal cerebral ischemia/reperfusion model. After 120 minutes of middle cerebral artery occlusion and reperfusion, rats were treated with acupuncture at the "Dazhui" (DU20), "Baihui" (DU26) and "Renzhong" (DU14) points. Neurologic function deficit score, cerebral infarct area ratio, neuronal apoptosis and miR-34c-5p expression were evaluated 72 hr after treatment. The autophagy agonist RAPA and the antagonist 3MA were used to evaluate the neuro protective effects of autophagy-mediated acupuncture. We found that acupuncture treatment improved autophagy in the brain tissue of CIRI rats. Acupuncture reversed the negative effects of 3MA on CIRI, and acupuncture combined with RAPA further enhanced autophagy. We also found that acupuncture could increase miR-34c-5p expression in hippocampal neurons after ischemia/reperfusion. Acupuncture and a miR-34c agomir were able to enhance autophagy, improve neurologic deficits, and reduce the cerebral infarct area ratio and apoptosis rate by promoting the expression of miR-34c-5p. Silencing miR-34c resulted in a significantly reduced activating effect of acupuncture on autophagy and increased apoptosis, neurologic deficit symptoms, and cerebral infarct area ratio. This confirms that acupuncture can upregulate miR-34c-5p expression, which is beneficial in the treatment of CIRI.
Collapse
Affiliation(s)
- Xiao-Ye Lu
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China; Department of Rehabilitation, Changsha Central Hospital, Changsha, Hunan Province 410004, China
| | - Qian-Yi Lv
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Qi-Long Li
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Hong Zhang
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Chu-Tao Chen
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China.
| | - Hao-Mei Tian
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China.
| |
Collapse
|
6
|
Liu L, Zhao B, Yu Y, Gao W, Liu W, Chen L, Xia Z, Cao Q. Vascular Aging in Ischemic Stroke. J Am Heart Assoc 2024; 13:e033341. [PMID: 39023057 PMCID: PMC11964078 DOI: 10.1161/jaha.123.033341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.
Collapse
Affiliation(s)
- Lian Liu
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bo Zhao
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yueyang Yu
- Taikang Medical School, School of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Wenwei Gao
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| | - Weitu Liu
- Department of PathologyHubei Provincial Hospital of Traditional Chinese MedicineWuhanChina
| | - Lili Chen
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhongyuan Xia
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Quan Cao
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Zhang Z, Lu T, Li S, Zhao R, Li H, Zhang X, Li Y, Xia Y, Ni G. Acupuncture Extended the Thrombolysis Window by Suppressing Blood-Brain Barrier Disruption and Regulating Autophagy-Apoptosis Balance after Ischemic Stroke. Brain Sci 2024; 14:399. [PMID: 38672048 PMCID: PMC11048240 DOI: 10.3390/brainsci14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) acupuncture is an integral part of traditional Chinese medicine, specifically designed to address acute ischemic stroke by targeting key acupoints such as Shuigou (GV26) and Neiguan (PC6). In this study, we explored the therapeutic potential of XNKQ acupuncture in extending the time window for thrombolysis and interrogated the molecular mechanisms responsible for this effect. METHODS The effect of extending the thrombolysis window by acupuncture was evaluated via TTC staining, neuronal score evaluation, hemorrhagic transformation assay, and H&E staining. RNA sequencing (RNA-seq) technology was performed to identify the therapeutic targets and intervention mechanisms of acupuncture. Evans blue staining and transmission electron microscopy were used to assess blood-brain barrier (BBB) integrity. Immunofluorescence staining and co-immunoprecipitation were performed to evaluate the level of autophagy and apoptosis and validate their interactions with BBB endothelial cells. RESULTS Acupuncture alleviated infarction and neurological deficits and extended the thrombolysis window to 6 h. The RNA-seq revealed 16 potential therapeutic predictors for acupuncture intervention, which related to suppressing inflammation and restoring the function of BBB and blood vessels. Furthermore, acupuncture suppressed BBB leakage and preserved tight junction protein expression. The protective effect was associated with regulation of the autophagy-apoptosis balance in BBB endothelial cells. Acupuncture intervention dissociated the Beclin1/Bcl-2 complex, thereby promoting autophagy and reducing apoptosis. CONCLUSION XNKQ acupuncture could serve as an adjunctive therapy for rt-PA thrombolysis, aiming to extend the therapeutic time window and mitigate ischemia-reperfusion injury. Acupuncture suppressed BBB disruption by regulating the autophagy-apoptosis balance, which in turn extended the therapeutic window of rt-PA in IS. These findings provide a rationale for further exploration of acupuncture as a complementary candidate co-administered with rt-PA.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianliang Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shanshan Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Ruyu Zhao
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Honglei Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Xinchang Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yiyang Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yawen Xia
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Guangxia Ni
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
8
|
Zhang L, Hu Z, Bai W, Peng Y, Lin Y, Cong Z. Fucoxanthin ameliorates traumatic brain injury by suppressing the blood-brain barrier disruption. iScience 2023; 26:108270. [PMID: 37965135 PMCID: PMC10641514 DOI: 10.1016/j.isci.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Fucoxanthin is the most abundant marine carotenoid extracted from seaweed. Our previous study has shown that fucoxanthin inhibited oxidative stress after traumatic brain injury (TBI). However, the effects of fucoxanthin on TBI-induced blood-brain barrier (BBB) destruction have not been well understood. In the present study, we found that fucoxanthin improved neurological dysfunction, reduced brain edema, attenuated cortical lesion volume, and decreased dendrites loss after TBI in vivo. Moreover, fucoxanthin suppressed BBB leakage, preserved tight junction (TJ) and adherens junction (AJ) proteins, and inhibited MMP-9 expression. Furthermore, fucoxanthin alleviated apoptosis and ferroptosis, and activated mitophagy in endothelial cells (ECs) after TBI. However, the protection of fucoxanthin on BBB was attenuated when mitophagy was inhibited. Importantly, fucoxanthin also provided protective effects in bEnd.3 cells after TBI. Taken together, our results suggested that fucoxanthin played a key role in the protection of BBB after TBI through mitophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| |
Collapse
|
9
|
Yang Y, Hao T, Yao X, Che Y, Liu Y, Fang M, Wang Y, Zhou D, Chai H, Li N, Hou Y. Crebanine ameliorates ischemia-reperfusion brain damage by inhibiting oxidative stress and neuroinflammation mediated by NADPH oxidase 2 in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155044. [PMID: 37634486 DOI: 10.1016/j.phymed.2023.155044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The urgent challenge for ischemic stroke treatment is the lack of effective neuroprotectants that target multiple pathological processes. Crebanine, an isoquinoline-like alkaloid with superior pharmacological activities, presents itself as a promising candidate for neuroprotection. However, its effects and mechanisms on ischemic stroke remain unknown. METHODS The effects of crebanine on brain damage following ischemic stroke were evaluated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model. Mechanism of action was investigated using both MCAO/R rats and lipopolysaccharide (LPS)-activated BV-2 cells. RESULTS We initially demonstrated that crebanine effectively ameliorated the neurological deficits in MCAO/R rats, while also reducing brain edema and infarction. Treatment with crebanine resulted in the up-regulation of NeuN+ fluorescence density and down-regulation of FJB+ cell count, and mitigated synaptic damage. Crebanine attenuated the hyperactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by downregulating NADP+ and NADPH levels, suppressing gp91phox and p47phox expressions, and reducing p47phox membrane translocation in Iba-1+ cells. Additionally, crebanine reduced the quantity of Iba-1+ cells and protein expression. Correlation analysis has demonstrated that the inhibition of NOX2 activation in microglia is beneficial for mitigating I/R brain injuries. Moreover, crebanine exhibited significant antioxidant properties by down-regulating the expression of superoxide anion and intracellular reactive oxygen species in vivo and in vitro, and reducing lipid and DNA peroxidation. Crebanine exerted anti-inflammatory effect, as evidenced by the reduction in the expressions of nitric oxide, interleukin 1β, tumor necrosis factor α, interleukin 6, and inducible nitric oxide synthase. The effect of crebanine was achieved through the suppression of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway. This is supported by evidence showing reduced NF-κB p65 promoter activity and nucleus translocation, as well as suppressed IκBα phosphorylation and degradation. Additionally, it inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. Importantly, the anti-oxidative stress and neuroinflammation effects of crebanine were further enhanced after silencing gp91phox and p47phox. CONCLUSION Crebanine alleviated the brain damages of MCAO/R rats by inhibiting oxidative stress and neuroinflammation mediated by NOX2 in microglia, implying crebanine might be a potential natural drug for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Tingyu Hao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Che
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
10
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Kuzekova AA, Novoselova TV, Sharapov MG, Mubarakshina EK, Goncharov RG, Khrenov MO. Protective effect of exogenous peroxiredoxin 6 and thymic peptide thymulin on BBB conditions in an experimental model of multiple sclerosis. Arch Biochem Biophys 2023; 746:109729. [PMID: 37633587 DOI: 10.1016/j.abb.2023.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
This study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms. Thymulin treatment was accompanied by a decrease in immune cell activation as judged by interleukin-6, -17, and interferon-gamma cytokine levels in serum and NF-kappaB cascade activation in splenocytes of mice with EAE. Prdx6 did not induce significant immunomodulatory effects but abruptly decreased EAE-induced NOX1 and NOX4 gene expression in brain tissue, which may be one of the possible mechanisms of its beneficial effects on BBB conditions and health status. The simultaneous administration of thymulin and Prdx6 resulted in complete symptomatic restoration of mice with EAE. The results demonstrate prospective strategies for multiple sclerosis treatment.
Collapse
Affiliation(s)
- S M Lunin
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia.
| | - E G Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - O V Glushkova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - A A Kuzekova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M G Sharapov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - E K Mubarakshina
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - R G Goncharov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| |
Collapse
|