1
|
Hamdi A, Horchani M, Jannet HB, Snoussi M, Noumi E, Bouali N, Kadri A, Polito F, De Feo V, Edziri H. In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils. Pharmaceuticals (Basel) 2023; 16:1669. [PMID: 38139796 PMCID: PMC10748103 DOI: 10.3390/ph16121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains β-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.
Collapse
Affiliation(s)
- Assia Hamdi
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.H.); (H.B.J.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.H.); (H.B.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al Baha University, Al Baha 65527, Saudi Arabia;
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Hayet Edziri
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir 5000, Tunisia;
| |
Collapse
|
2
|
Noumi E, Ahmad I, Adnan M, Patel H, Merghni A, Haddaji N, Bouali N, Alabbosh KF, Kadri A, Caputo L, Polito F, Snoussi M, Feo VD. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023; 28:7691. [PMID: 38067422 PMCID: PMC10707387 DOI: 10.3390/molecules28237691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al-Baha University, P.O. Box 1988, Al Baha 65527, Saudi Arabia;
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| |
Collapse
|
3
|
Wang X, Li Y, Liu S, Wang H, Chang X, Zhang J. Chestnut Shell Polyphenols Inhibit the Growth of Three Food-Spoilage Bacteria by Regulating Key Enzymes of Metabolism. Foods 2023; 12:3312. [PMID: 37685244 PMCID: PMC10486611 DOI: 10.3390/foods12173312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The microbial contamination of food poses a threat to human health. Chestnut shells, which are byproducts of chestnut processing, contain polyphenols that exert various physiological effects, and thus have the potential to be used in food preservation. This study investigates the bacteriostatic effect and mechanism(s) of the action of chestnut shell polyphenols (CSPs) on three food-spoilage bacteria, namely Bacillus subtilis, Pseudomonas fragi, and Escherichia coli. To this end, the effect of CSPs on the ultrastructure of each bacterium was determined using scanning electron microscopy and transmission electron microscopy. Moreover, gene expression was analyzed using RT-qPCR. Subsequent molecular docking analysis was employed to elucidate the mechanism of action employed by CSPs via the inhibition of key enzymes. Ultrastructure analysis showed that CSPs damaged the bacterial cell wall and increased permeability. At 0.313 mg/mL, CSPs significantly increased the activity of alkaline phosphatase and lactate dehydrogenase, as well as protein leakage (p < 0.05), whereas the activity of the tricarboxylic acid (TCA) cycle enzymes, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were inhibited (p < 0.05). The expression levels of the TCA-related genes gltA, icd, sucA, atpA, citA, odhA, IS178_RS16090, and IS178_RS16290 are also significantly downregulated by CSP treatment (p < 0.05). Moreover, CSPs inhibit respiration and energy metabolism, including ATPase activity and adenosine triphosphate (ATP) synthesis (p < 0.05). Molecular docking determined that proanthocyanidins B1 and C1, the main components of CSPs, are responsible for the antibacterial activity. Therefore, as natural antibacterial substances, CSPs have considerable potential for development and application as natural food preservatives.
Collapse
Affiliation(s)
- Xinfang Wang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Li
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Noumi E, Ahmad I, Adnan M, Merghni A, Patel H, Haddaji N, Bouali N, Alabbosh KF, Ghannay S, Aouadi K, Kadri A, Polito F, Snoussi M, De Feo V. GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1997. [PMID: 37653914 PMCID: PMC10220905 DOI: 10.3390/plants12101997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia; (S.G.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia; (S.G.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy
| |
Collapse
|
5
|
Snoussi M, Lajimi RH, Badraoui R, Al-Reshidi M, Abdulhakeem MA, Patel M, Siddiqui AJ, Adnan M, Hosni K, De Feo V, Polito F, Kadri A, Noumi E. Chemical Composition of Ducrosia flabellifolia L. Methanolic Extract and Volatile Oil: ADME Properties, In Vitro and In Silico Screening of Antimicrobial, Antioxidant and Anticancer Activities. Metabolites 2022; 13:64. [PMID: 36676989 PMCID: PMC9866066 DOI: 10.3390/metabo13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
In the present study, the chemical composition of the volatile oil and methanolic extract from Ducrosia flabellifolia Boiss. was investigated. The antimicrobial, antioxidant, and anticancer activities of the methanolic extract from D. flabellifolia aerial parts were screened using experimental and computational approaches. Results have reported the identification of decanal (28.31%) and dodecanal (16.93%) as major compounds in the essential oil obtained through hydrodistillation. Farnesyl pyrophosphate, Methyl 7-desoxypurpurogallin-7-carboxylate trimethyl ether, Dihydro-Obliquin, Gummiferol, 2-Phenylaminoadenosine, and 2,4,6,8,10-dodecapentaenal, on the other hand, were the dominant compounds in the methanolic extract. Moreover, the tested extract was active against a large collection of bacteria and yeast strains with diameter of growth inhibition ranging from 6.67 ± 0.57 mm to 17.00 ± 1.73 mm, with bacteriostatic and fungicidal activities against almost all tested microorganisms. In addition, D. flabellifolia methanolic extract was dominated by phenolic compounds (33.85 ± 1.63 mg of gallic acid equivalent per gram of extract) and was able to trap DPPH• and ABTS•+ radicals with IC50 about 0.05 ± 0 mg/mL and 0.105 ± 0 mg/mL, respectively. The highest percentages of anticancer activity were recorded at 500 µg/mL for all cancer cell lines with IC50 about 240. 56 µg/mL (A-549), 202.94 µg/mL (HCT-116), and 154.44 µg/mL (MCF-7). The in-silico approach showed that D. flabellifolia identified compounds bound 1HD2, 2XCT, 2QZW, and 3LN1 with high affinities, which together with molecular interactions and the bond network satisfactorily explain the experimental results using antimicrobial, antioxidant, and anticancer assays. The obtained results highlighted the ethnopharmacological properties of the rare desertic D. flabellifolia plant species growing wild in Hail region (Saudi Arabia).
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Ramzi Hadj Lajimi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Water, Membranes and Environmental Biotechnologies, Center of Research and Water Technologies, P. B 273, Soliman 8020, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Section of Histology Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Road Djebal Lakhdhar, Tunis 1007, Tunisia
| | - Mousa Al-Reshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Mohammad A. Abdulhakeem
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physico-Chimique, Biotechpôle de Sidi Thabet 2020, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
6
|
Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|