1
|
Liu L, Han F, Du N, Liu Y, Duan A, Kang S, Li B. New insights into the ferroptosis and immune infiltration in endometriosis: a bioinformatics-based analysis. Front Immunol 2025; 15:1507083. [PMID: 39872538 PMCID: PMC11769811 DOI: 10.3389/fimmu.2024.1507083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Background Ferroptosis, a recently discovered iron-dependent cell death, is linked to various diseases but its role in endometriosis is still not fully understood. Methods In this study, we integrated microarray data of endometriosis from the GEO database and ferroptosis-related genes (FRGs) from the FerrDb database to further investigate the regulation of ferroptosis in endometriosis and its impact on the immune microenvironment. WGCNA identified ferroptosis-related modules, annotated by GO & KEGG. MNC algorithm pinpointed hub FRGs. Cytoscape construct a ceRNA network, and ROC curves evaluated diagnostic efficacy of hub FRGs. Consensus cluster analysis identified ferroptosis subclusters, and CIBERSORT assessed immune infiltration of these subclusters. Finally, RT-qPCR validated hub FRG expression in clinical tissues. Results We identified two ferroptosis modules of endometriosis, and by enrichment analysis, they are closely linked with autophagy, mTOR, oxidative stress, and FOXO pathways. Furthermore, we identified 10 hub FRGs, and the ROC curve showed better predictive ability for diagnosing. RT-qPCR confirmed that the tissue expression of 10 hub FRGs was mostly consistent with the database results. Subsequently, we developed a ceRNA network based on 4 FRGs (BECN1, OSBPL9, TGFBR1, GSK3B). Next, we identified two ferroptosis subclusters of endometriosis and discovered that they are closely linked with endometriosis stage. Importantly, immune enrichment analysis illustrated that the expression levels of immune cells and immune checkpoint genes were significantly different in the two ferroptosis subclusters. Specifically, the ferroptosis subcluster with stage III-IV of endometriosis is more inclined to the immunosuppressive microenvironment. Conclusions Our study showed that ferroptosis may jointly promote endometriosis progression by remodeling the immune microenvironment, offering new insights into pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Lusha Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Han
- Department of Gynecology, Handan Central Hospital, Handan, China
| | - Naiyi Du
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yakun Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aihong Duan
- Department of Gynecology, Handan Central Hospital, Handan, China
| | - Shan Kang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Gynecology, Handan Central Hospital, Handan, China
| |
Collapse
|
2
|
Xu T, Zhuang Y, Cao H. The association between vitamin intake and endometriosis: a cross-sectional study of the NHANES 1999-2006. Reprod Health 2024; 21:158. [PMID: 39497169 PMCID: PMC11536846 DOI: 10.1186/s12978-024-01895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Endometriosis is a common cause of female reproductive problems, and vitamin intake may affect its incidence. Therefore, we further explored the association between multivitamin intake and endometriosis in a large population-based study. METHODS This study included 3351 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2006. The dietary intake of eight vitamins was calculated as the average of two 24-h recall interviews, and information on endometriosis was obtained through questionnaires that included gynecological history. Multiple logistic regression analysis was used to explore the relationship between multivitamin intake and endometriosis. Smoothed curve fitting analysis was employed to assess the dose-response relationship between vitamins and endometriosis. Finally, subgroup analysis and interaction tests were conducted to determine the association of covariates between vitamins and endometriosis. RESULTS In this large-scale cross-sectional study, multiple logistic regression analysis showed that the intake of vitamins A, B1, B2, B6, C and folate was negatively associated with the occurrence of endometriosis. The odds ratios associated with a per-SD increase were 0.836 (95%CI: 0.702, 0.997), 0.817 (95%CI: 0.702, 0.951), 0.860 (95%CI: 0.746, 0.991), 0.784 (95%CI: 0.669, 0.919), 0.845 (95%CI: 0.718, 0.994), and 0.772 (95%CI: 0.660, 0.903), respectively. Smoothed curve fitting analysis revealed that the intake of vitamins A, B1, B2, B6, C, and folate was negatively associated with the risk of endometriosis (P < 0.05). Vitamin E showed a saturating effect, with an optimal cutoff point at 13.18. Below this cutoff, the intake of vitamin E was negatively correlated with the risk of endometriosis (OR = 0.947, 95% CI: 0.906, 0.989), whereas above the cutoff, there was no significant correlation between vitamin E intake and the risk of endometriosis (OR = 1.001, 95% CI: 0.997, 1.005). CONCLUSIONS The results of this study indicate a significant linear negative correlation between the intake of vitamins A, B1, B2, B6, C, and folate, and the risk of endometriosis, and reveal a threshold effect for vitamin E intake on the risk of endometriosis. These findings could inform clinical dietary interventions and may support the development of preventive strategies for endometriosis, potentially aiding in its reduction.
Collapse
Affiliation(s)
- Ting Xu
- Department of Ambulatory Surgical Center, Jiangxi Maternal and Child Health Hospital, Maternal and Child Health Hospital of Nanchang Medical College, Nanchang, China
| | - Yuan Zhuang
- Department of Ambulatory Surgical Center, Jiangxi Maternal and Child Health Hospital, Maternal and Child Health Hospital of Nanchang Medical College, Nanchang, China
| | - Huabin Cao
- Department of Ambulatory Surgical Center, Jiangxi Maternal and Child Health Hospital, Maternal and Child Health Hospital of Nanchang Medical College, Nanchang, China.
| |
Collapse
|
3
|
Sabetian S, Namavar Jahromi B, Vakili S, Samare-Najaf M, Siahbani S, Zal F, Tanideh N, Dara M, Khodabandeh Z. Potential Effects of Soy Isoflavones and Broccoli Extract on Oxidative Stress, Autophagy, and Apoptosis Gene Markers in Endometriosis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:384-390. [PMID: 39564831 PMCID: PMC11589977 DOI: 10.22074/ijfs.2023.1999395.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2024]
Abstract
BACKGROUND Endometriosis is an idiopathic gynecological condition affecting women with pelvic pain and infertility in reproductive ages. Due to preventive and therapeutic effects of soy isoflavones (SI) and broccoli extract (BE) on tumor angiogenesis, inflammation and oxidative stress and since endometriosis is accompanied by chronic inflammation, in this study, we aim to evaluate the potential role of these compounds on the pathological scores of endometriosis and also consider the expression level of the gene markers of autophagy, apoptosis, and oxidative stress in an endometriosis rat model. MATERIALS AND METHODS In the present experimental study, 45 mature female Sprague- Dawley rats weighing 220 ± 20 g at the age of eight weeks with surgically induced endometriosis was divided into five groups and treated for six weeks with normal saline (control group), BE, SI, BE+SI by oral gavage, and also Diphereline intramuscularly. The histopathological scores of the endometrial implants (0, 1, 2, 3: no, poorly, moderately and well-preserved epithelial layers, respectively) and the mRNA expression level of Bcl-2, Bax, Caspase-3, Beclin-1, Lc3, and Sod within peritoneal tissue were compared among the groups. RESULTS Pathologic scores of the implants in the Diphereline (1.2 ± 0.27) and BE+SI (1.2 ± 0.41) groups were declined significantly in comparison with the control group (2.08 ± 0.44) (P≤0.001). In the endometriotic structures, the mRNA expression levels of our target genes were improved significantly (P≤0.01) in comparison with the control group. CONCLUSION The findings of the current study demonstrated that the simultaneous consumption of a certain amount of broccoli extract and SI can be considered as a promising therapeutic strategy for treatment of endometriosis.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samare-Najaf
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Sarah Siahbani
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Khan MZ, Chen W, Liu X, Kou X, Khan A, Khan RU, Zahoor M, Wang C. An Overview of Bioactive Compounds' Role in Modulating the Nrf2/Keap1/NF-κB Pathway to Alleviate Lipopolysaccharide-Induced Endometritis. Int J Mol Sci 2024; 25:10319. [PMID: 39408650 PMCID: PMC11476794 DOI: 10.3390/ijms251910319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Endometritis is a common inflammatory condition of the uterine endometrial lining that primarily affects perinatal dairy animals and causes significant economic losses in agriculture. It is usually triggered by pathogenic bacteria and is associated with chronic postpartum reproductive tract infections. Bacterial lipopolysaccharides (LPSs) are known to increase levels of reactive oxygen species (ROS), leading to oxidative stress and inflammation through the activation of the NF-κB signaling pathway and the inhibition of Nrf2 nuclear translocation, which regulates antioxidant response elements (AREs). The effectiveness of the conventional management strategy involving antibiotics is decreasing due to resistance and residual concerns. This review explores the potential therapeutic benefits of targeting the Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/NF-κB signaling pathway to alleviate LPS-induced endometritis. We discuss recent advancements in veterinary medicine that utilize exogenous antioxidants to modulate these pathways, thereby reducing oxidative stress and inflammatory responses in endometrial cells. This review highlights the efficacy of several bioactive compounds that enhance Nrf2 signaling and suppress NF-κB activation, offering protective effects against oxidative damage and inflammation. By examining various in vitro studies, this review emphasizes the emerging role of these signaling pathways in developing new therapeutic strategies that could potentially replace or supplement traditional treatments and mitigate the economic impacts of endometritis in livestock.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Xiyan Kou
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Rahat Ullah Khan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS-TWAS Center of Excellence for Emerging Infectious Diseases, Chinese Academy of Sciences, Beijing 100101, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
5
|
Zeng Y, Hang F, Peng C, Zhao L, Ou S, Luo L, Liu B. Research progress in rodent models of endometriosis. J Reprod Immunol 2024; 163:104219. [PMID: 38422807 DOI: 10.1016/j.jri.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Endometriosis is a common and frequent disease in gynecology; its etiology and pathogenesis are partially understood and still not clear. The construction of suitable animal models is beneficial for basic research related to the disease. Currently, rodents have the advantages of low cost, fast reproduction, easy rearing, and a similar endometrial structure to humans. Depending on the purpose of the experiment, different molding methods have their advantages. In this paper, we describe the traditional methods of constructing endometriosis rodent models, compare their advantages and disadvantages, and introduce newly developed rodent models, such as cell line injection models, pain models, genetically engineered mouse models, fluorescent tracer models, iron overload models, chemical induction models, and methods of constructing rodent models of different subtypes of endometriosis. Fertility and treatment of endometriosis rodent models are also described. This study provides a reference for researchers in the selection of animal models for pathogenesis and drug treatment studies.
Collapse
Affiliation(s)
- Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Fu Hang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
6
|
Jian X, Shi C, Luo W, Zhou L, Jiang L, Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed Pharmacother 2024; 173:116418. [PMID: 38461683 DOI: 10.1016/j.biopha.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Quercetin is a representative flavonoid that is widely present in fruits, herbs, and vegetables. It is also an important active core component in traditional Chinese medicines. As an important flavonoid, quercetin has various properties and exerts antioxidant, anti-inflammatory, and cardioprotective effects. The public interest in quercetin is increasing, and quercetin has been used to prevent or treat numerous of diseases, such as polycystic ovary syndrome (PCOS), cancer, autoimmune diseases and chronic cardiovascular diseases, in clinical experiments and animal studies due to its powerful antioxidant properties and minimal side effects. Quercetin exerts marked pharmacological effects on gynecological disorders; however, there have been no reviews about the potential health benefits of quercetin in the context of gynecological disorders, including PCOS, premature ovary failure (POF), endometriosis (EM), ovarian cancer (OC), cervical cancer (CC) and endometrial carcinoma (EC). Thus, this review aimed to summarize the biological effects of quercetin on gynecological disorders and its mechanisms.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Weichen Luo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Huang E, Wang X, Chen L. Regulated Cell Death in Endometriosis. Biomolecules 2024; 14:142. [PMID: 38397379 PMCID: PMC10886833 DOI: 10.3390/biom14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Regulated cell death (RCD) represents a distinct mode of cell demise, differing from accidental cell death (ACD), characterized by specific signaling cascades orchestrated by diverse biomolecules. The regular process of cell death plays a crucial role in upholding internal homeostasis, acting as a safeguard against biological or chemical damage. Nonetheless, specific programmed cell deaths have the potential to activate an immune-inflammatory response, potentially contributing to diseases by enlisting immune cells and releasing pro-inflammatory factors. Endometriosis, a prevalent gynecological ailment, remains incompletely understood despite substantial progress in unraveling associated signaling pathways. Its complexity is intricately tied to the dysregulation of inflammatory immune responses, with various RCD processes such as apoptosis, autophagic cell death, pyroptosis, and ferroptosis implicated in its development. Notably, limited research explores the association between endometriosis and specific RCD pathways like pyroptosis and cuproptosis. The exploration of regulated cell death in the context of endometriosis holds tremendous potential for further advancements. This article thoroughly reviews the molecular mechanisms governed by regulated cell death and their implications for endometriosis. A comprehensive understanding of the regulated cell death mechanism in endometriosis has the potential to catalyze the development of promising therapeutic strategies and chart the course for future research directions in the field.
Collapse
Affiliation(s)
| | | | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.H.)
| |
Collapse
|
8
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Molecular mechanism of autophagy and apoptosis in endometriosis: Current understanding and future research directions. Reprod Med Biol 2024; 23:e12577. [PMID: 38645639 PMCID: PMC11031673 DOI: 10.1002/rmb2.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Background Endometriosis is a common gynecological condition, with symptoms including pain and infertility. Regurgitated endometrial cells into the peritoneal cavity encounter hypoxia and nutrient starvation. Endometriotic cells have evolved various adaptive mechanisms to survive in this inevitable condition. These adaptations include escape from apoptosis. Autophagy, a self-degradation system, controls apoptosis during stress conditions. However, to date, the mechanisms regulating the interplay between autophagy and apoptosis are still poorly understood. In this review, we summarize the current understanding of the molecular characteristics of autophagy in endometriosis and discuss future therapeutic challenges. Methods A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. Results Autophagy may be dynamically regulated through various intrinsic (e.g., PI3K/AKT/mTOR signal transduction network) and extrinsic (e.g., hypoxia and iron-mediated oxidative stress) pathways, contributing to the development and progression of endometriosis. Upregulation of mTOR expression suppresses apoptosis via inhibiting the autophagy pathway, whereas hypoxia or excess iron often inhibits apoptosis via promoting autophagy. Conclusion Endometriotic cells may have acquired antiapoptotic mechanisms through unique intrinsic and extrinsic autophagy pathways to survive in changing environments.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Chiharu Yoshimoto
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Obstetrics and GynecologyNara Prefecture General Medical CenterNaraJapan
| | - Sho Matsubara
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of MedicineKei Oushin ClinicNishinomiyaJapan
| | - Hiroshi Shigetomi
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Gynecology and Reproductive MedicineAska Ladies ClinicNaraJapan
| |
Collapse
|
9
|
Deng Y, Lou T, Kong L, Liu C. Prohibitin2/PHB2, Transcriptionally Regulated by GABPA, Inhibits Cell Growth via PRKN/Parkin-dependent Mitophagy in Endometriosis. Reprod Sci 2023; 30:3629-3640. [PMID: 37587393 DOI: 10.1007/s43032-023-01316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Endometriosis (EMS) is a common benign gynecological disease affecting women of reproductive age. It is characterized by abnormal growth of endometrial tissue outside the uterine cavity, resulting in chronic pelvic pain and infertility. Endometrial physiological and pathological processes are intimately connected to autophagy. Mitophagy is an essential selective mode that protects cells from metabolic stress and hypoxia. Mitochondrial autophagy mediated by prohibitin 2 (PHB2) is dependent on the PRKN/Parkin pathway and is involved in numerous human diseases. Uncertainty remains as to whether mitophagy regulation by PHB2 contributes to the occurrence and progression of EMS. This study aims to investigate the mechanism underlying the role of PHB2 in EMS. This study detected the protein and mRNA expression of PHB2 in ectopic and normal endometrial tissues of ovarian EMS, in addition to ectopic endometrial cell line 12Z and endometrial stromal cell line KC02-44D for gene overexpression or knockdown. Cell function experiments and mitochondrial function experiments were conducted to investigate the role of PHB2 in the endometrium. Bioinformatic analysis and experiments were also used to investigate the upstream transcription factors that influence PHB2 expression. PHB2 was downregulated in ectopic endometrium, and PHB2 overexpression inhibited cell proliferation, migration, and invasion and promoted apoptosis. The upregulation of mitophagy markers, including Parkin and LC3II/I, and the downregulation of autophagy degradation markers P62 and TOMM20 in EMS suggest that PHB2 may contribute to cell proliferation, migration, invasion, and apoptosis via PRKN/Parkin-mediated mitophagy. Analysis and validation of bioinformatics data revealed that the transcription factor GABPA binds directly to the PHB2 promoter region and controls the transcriptional expression of PHB2. This study investigated the role of PHB2 in the onset of EMS. It inhibits EMS growth via PRKN/Parkin-mediated mitophagy, and GABPA controls the transcriptional disorder of PHB2. This study's findings suggest a novel method for investigating the clinical potential of PHB2 in EMS.
Collapse
Affiliation(s)
- Yupeng Deng
- Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tong Lou
- Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Kong
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
10
|
Impellizzeri D, Siracusa R, D'Amico R, Fusco R, Cordaro M, Cuzzocrea S, Di Paola R. Açaí berry ameliorates cognitive impairment by inhibiting NLRP3/ASC/CASP axis in STZ-induced diabetic neuropathy in mice. J Neurophysiol 2023; 130:671-683. [PMID: 37584088 DOI: 10.1152/jn.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Interdonato L, Marino Y, D'Amico R, Cordaro M, Siracusa R, Impellizzeri D, Macrì F, Fusco R, Cuzzocrea S, Di Paola R. Modulation of the Proliferative Pathway, Neuroinflammation and Pain in Endometriosis. Int J Mol Sci 2023; 24:11741. [PMID: 37511500 PMCID: PMC10380329 DOI: 10.3390/ijms241411741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion's size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
Franco GA, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Bioactive Compounds of the Mediterranean Diet as Nutritional Support to Fight Neurodegenerative Disease. Int J Mol Sci 2023; 24:7318. [PMID: 37108480 PMCID: PMC10139089 DOI: 10.3390/ijms24087318] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress, and neuronal depletion. They include selective malfunction and progressive loss of neurons, glial cells, and neural networks in the brain and spinal cord. There is an urgent need to develop new and more effective therapeutic strategies to combat these devastating diseases because, today, there is no treatment that can cure degenerative diseases; however, we have many symptomatic treatments. Current nutritional approaches are beginning to reflect a fundamental change in our understanding of health. The Mediterranean diet may have a protective effect on the neurodegenerative process because it is rich in antioxidants, fiber, and omega-3 polyunsaturated fatty acids. Increasing knowledge regarding the impact of diet on regulation at the genetic and molecular levels is changing the way we consider the role of nutrition, resulting in new dietary strategies. Natural products, thanks to their bioactive compounds, have recently undergone extensive exploration and study for their therapeutic potential for a variety of diseases. Targeting simultaneous multiple mechanisms of action and a neuroprotection approach with the diet could prevent cell death and restore function to damaged neurons. For these reasons, this review will be focused on the therapeutic potential of natural products and the associations between the Mediterranean-style diet (MD), neurodegenerative diseases, and markers and mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
13
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|