1
|
Elgenidy A, Atef Abdelsattar Ibrahim H, Elmozugi T, Abdelhalim NN, Al-Kurdi MA, Wassef PG, Zakaria CG, Elsalamony YA, Nasr M, Abodaif A, Hussein A, Hassan AEM, Ahmad AR, Elhoufey A, Fageeh M, Alruwaili TAM, Dailah HG, Temsah MH, Saad K. Efficacy of melatonin for treatment and prevention of neonatal necrotizing enterocolitis: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4947-4955. [PMID: 39708100 DOI: 10.1007/s00210-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The purpose of this study was to systematically review the available literature evaluating the use of melatonin for preventing and treating neonatal necrotizing enterocolitis (NEC). A systematic review of studies examining the effect of melatonin on neonatal NEC was conducted. The databases of Medline, Scopus, WOS, Embase, and Cochrane Central Register of Controlled Trials were searched for relevant studies. For risk of bias and applicability, The ROB2 tool was used for randomized controlled trials, and the ROBINS-I tool was used for non-randomized controlled trials. Three studies, comprising 106 preterm neonates, were included in the review, whose mean gestational ages ranged from 31.8 to 33.53 weeks. Melatonin doses varied among the studies. A randomized, double-blind, placebo-controlled study revealed that early administration of melatonin in preterm newborns resulted in a decrease in lipid peroxidation during the initial days of life. Two studies evaluated the role of melatonin in NEC. Both reported significant clinical and laboratory improvements in the melatonin groups, including reduced abdominal distension, metabolic acidosis, thrombocytopenia, hyponatremia, and lower mortality rates compared to control groups. This systematic review suggests that melatonin may be a potential therapeutic approach for NEC in preterm infants. However, further RCTS are needed to establish its therapeutic or preventive role.
Collapse
Affiliation(s)
| | | | - Taher Elmozugi
- Faculty of Medicine, Benghazi University, Bengazi, Libya
| | | | | | | | | | | | - Mohamed Nasr
- Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | - Asmaa Abodaif
- Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | | | - Abd-El-Monem Hassan
- Departments of Pediatrics, Faculty of medicine, Al-Azhar university, Assiut, Egypt
| | - Ahmad Roshdy Ahmad
- Departments of Pediatrics , College of Medicine, Jouf University, 72388, Sakaka, Saudi Arabia
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Mohsen Fageeh
- Director of forensic toxicology services, FMSC, Jazan, Saudi Arabia
| | - Thamer A M Alruwaili
- Departments of Pediatrics , College of Medicine, Jouf University, 72388, Sakaka, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | | | - Khaled Saad
- Departments of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
2
|
Sánchez-Borja C, Cristóbal-Cañadas D, Rodríguez-Lucenilla MI, Muñoz-Hoyos A, Agil A, Vázquez-López MÁ, Parrón-Carreño T, Nievas-Soriano BJ, Bonillo-Perales A, Bonillo-Perales JC. Lower plasma melatonin levels in non-hypoxic premature newborns associated with neonatal pain. Eur J Pediatr 2024; 183:3607-3615. [PMID: 38842550 PMCID: PMC11263426 DOI: 10.1007/s00431-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
We analyzed plasma melatonin levels in different groups of preterm newborns without hypoxia and their relationship with several perinatal variables like gestational age or neonatal pain. Prospective cohort study of preterm newborns (PTNB) without perinatal hypoxia, Apgar > 6 at 5 min, and oxygen needs on the third day of life. We compared melatonin levels at day 3 of life in different groups of non-hypoxic preterm infants (Student's t-tests, Mann-Whitney U, and chi2) and analyzed the relationship of melatonin with GA, birth weight, neonatal pain (Premature Infant Pain Profile (PIPP) scale), caffeine treatment, parenteral nutrition, or the development of free radical diseases (correlation study, linear regression) and factors associated with moderate/intense pain and free radical diseases (logistic regression analysis). Sixty-one preterm infants with gestational age (GA) of 30.7 ± 2.0 weeks with no oxygen requirements at day 3 of life were studied with plasma melatonin levels of 33.8 ± 12.01 pg/ml. Preterm infants weighing < 1250 g at birth had lower plasma melatonin levels (p = 0.05). Preterm infants with moderate or severe pain (PPIPP > 5) have lower melatonin levels (p = 0.01), and being preterm with PIPP > 5 is associated with lower plasma melatonin levels (p = 0.03). Being very preterm (GA < 32 GS), having low weight for gestational age (LWGA), receiving caffeine treatment, or requiring parenteral nutrition did not modify melatonin levels in non-hypoxic preterm infants (p = NS). Melatonin on day 3 of life in non-hypoxic preterm infants is not associated with later development of free radical diseases (BPD, sepsis, ROP, HIV, NEC). CONCLUSION We observed that preterm infants with moderate to severe pain have lower melatonin levels. These findings are relevant because they reinforce the findings of other authors that melatonin supplementation decreases pain and oxidative stress in painful procedures in premature infants. Further studies are needed to evaluate whether melatonin could be used as an analgesic in painful procedures in preterm infants. TRIAL REGISTRATION Trial registration was not required since this was an observational study. WHAT IS KNOWN • Melatonin is a potent antioxidant and free radical scavenger in newborns under stress conditions: hypoxia, acidosis, hypotension, painful procedures, or parenteral nutrition. • Pain stimulates the production of melatonin. • Various studies conclude that melatonin administration decreases pain during the neonatal period. WHAT IS NEW • Non-hypoxic preterm infants with moderate to severe pain (PIPP>5) have lower levels of melatonin. • Administration of caffeine and treatment with parenteral nutrition do not modify melatonin levels in non-hypoxic preterm infants.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Agil
- Department of Pharmacology, Institute Biohelath & Institute of Neuroscience, University of Granada, Granada, Spain
| | | | - Tesifón Parrón-Carreño
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain
| | - Bruno José Nievas-Soriano
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain.
| | | | | |
Collapse
|
3
|
Pavlyshyn H, Sarapuk I, Kozak K. The relationship between neonatal stress in preterm infants and developmental outcomes at the corrected age of 24-30 months. Front Psychol 2024; 15:1415054. [PMID: 38840740 PMCID: PMC11150848 DOI: 10.3389/fpsyg.2024.1415054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Aim The aim of research was to study the relationship between the stress experienced by preterm infants in the neonatal intensive care unit (NICU) and developmental status in the follow up, and to establish factors, associated with their neurodevelopment. Methods The first stage of research involved measuring stress markers (cortisol, melatonin) in infants (n = 56) during their NICU stay; the second phase assessed the developmental status at the corrected age of 24-30 months. Results The total ASQ-3 score, communication, problem solving, and personal-social skills scores at the corrected age of 24-30 months were positively correlated with melatonin level determined in the neonatal period (r = 0.31, p = 0.026; r = 0.36, p = 0.009; r = 0.30, p = 0.033, and r = 0.32; p = 0.022 respectively). In the same time, ASQ-3 communication and personal-social scores were negatively correlated with cortisol level (r = -0.31, p = 0.043; r = -0.35, p = 0.022). The ROC-curve analysis revealed that a decrease of melatonin below 3.44 ng/mL and 3.71 ng/mL during the neonatal period could predict communication and problem-solving delay, respectively. An increase in cortisol above 0.64 mcg/dl is predictive in personal-social delay. Negative correlation was identified between the NICU and total hospital stay duration and ASQ-3 communication scores in the follow-up (r = -0.27; p = 0.049 and r = -0.41; p = 0.002, respectively). The duration of mechanical ventilation was negatively correlated with gross motor scores (r = -0.46; p = 0.043). Apgar score was positively correlated with ASQ-3 communication (r = 0.29; p = 0.032) and personal-social scores (r = 0.28; p = 0.034); maternal age-with ASQ-3 total (r = 0.29; p = 0.034), communication (r = 0.37; p = 0.006), and personal-social scores (r = 0.29; p = 0.041). Positive correlations were observed between gestational age and communication scores (r = 0.28; p = 0.033). Infants who suffered neonatal sepsis had significantly often delay of communication (p = 0.014) and gross motor skills (p = 0.016). Children who required mechanical ventilation were more likely to have communication delay (p = 0.034). Conclusion Developmental outcomes in preterm infants at the corrected age of 24-30 months were associated with neonatal stress. Correlations between the communication, problem-solving and personal-social development in the follow up and cortisol and melatonin levels determined in the neonatal period supported this evidence. Factors as low gestational age, duration of hospital and NICU stay, mechanical ventilation, and sepsis were associated with more frequent delays in communication, gross motor and problems-solving skills.
Collapse
Affiliation(s)
- Halyna Pavlyshyn
- Department of Pediatrics, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | | |
Collapse
|
4
|
Perrone S, Carloni S, Dell'Orto VG, Filonzi L, Beretta V, Petrolini C, Lembo C, Buonocore G, Esposito S, Nonnis Marzano F. Hypoxic ischemic brain injury: animal models reveal new mechanisms of melatonin-mediated neuroprotection. Rev Neurosci 2024; 35:331-339. [PMID: 38153803 DOI: 10.1515/revneuro-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum. Based on the interplay between inflammation and OS, it was demonstrated in the same model that inflammation reduced brain sirtuin-1 expression and affected the expression of specific miRNAs. Moreover, through proteomic approach, an increased expression of genes and proteins in cerebral cortex synaptosomes has been revealed after induction of neonatal H-I. Administration of melatonin in the experimental treatment of brain damage and neurodegenerative diseases has produced promising therapeutic results. Melatonin protects against OS, contributes to reduce the generation of pro-inflammatory factors and promotes tissue regeneration and repair. Starting from the above cited aspects, this educational review aims to discuss the inflammatory and OS main pathways in H-I brain injury, focusing on the role of melatonin as neuroprotectant and providing current and emerging evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, 61029 Urbino, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Laura Filonzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Lembo
- Department of Neonatology, APHP, Necker-Enfants, Malades Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto 55, 53100 Siena, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Francesco Nonnis Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
5
|
Kitase Y, Madurai NK, Hamimi S, Hellinger RL, Odukoya OA, Ramachandra S, Muthukumar S, Vasan V, Sevensky R, Kirk SE, Gall A, Heck T, Ozen M, Orsburn BC, Robinson S, Jantzie LL. Chorioamnionitis disrupts erythropoietin and melatonin homeostasis through the placental-fetal-brain axis during critical developmental periods. Front Physiol 2023; 14:1201699. [PMID: 37546540 PMCID: PMC10398572 DOI: 10.3389/fphys.2023.1201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Novel therapeutics are emerging to mitigate damage from perinatal brain injury (PBI). Few newborns with PBI suffer from a singular etiology. Most experience cumulative insults from prenatal inflammation, genetic and epigenetic vulnerability, toxins (opioids, other drug exposures, environmental exposure), hypoxia-ischemia, and postnatal stressors such as sepsis and seizures. Accordingly, tailoring of emerging therapeutic regimens with endogenous repair or neuro-immunomodulatory agents for individuals requires a more precise understanding of ligand, receptor-, and non-receptor-mediated regulation of essential developmental hormones. Given the recent clinical focus on neurorepair for PBI, we hypothesized that there would be injury-induced changes in erythropoietin (EPO), erythropoietin receptor (EPOR), melatonin receptor (MLTR), NAD-dependent deacetylase sirtuin-1 (SIRT1) signaling, and hypoxia inducible factors (HIF1α, HIF2α). Specifically, we predicted that EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α alterations after chorioamnionitis (CHORIO) would reflect relative changes observed in human preterm infants. Similarly, we expected unique developmental regulation after injury that would reveal potential clues to mechanisms and timing of inflammatory and oxidative injury after CHORIO that could inform future therapeutic development to treat PBI. Methods: To induce CHORIO, a laparotomy was performed on embryonic day 18 (E18) in rats with transient uterine artery occlusion plus intra-amniotic injection of lipopolysaccharide (LPS). Placentae and fetal brains were collected at 24 h. Brains were also collected on postnatal day 2 (P2), P7, and P21. EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α levels were quantified using a clinical electrochemiluminescent biomarker platform, qPCR, and/or RNAscope. MLT levels were quantified with liquid chromatography mass spectrometry. Results: Examination of EPO, EPOR, and MLTR1 at 24 h showed that while placental levels of EPO and MLTR1 mRNA were decreased acutely after CHORIO, cerebral levels of EPO, EPOR and MLTR1 mRNA were increased compared to control. Notably, CHORIO brains at P2 were SIRT1 mRNA deficient with increased HIF1α and HIF2α despite normalized levels of EPO, EPOR and MLTR1, and in the presence of elevated serum EPO levels. Uniquely, brain levels of EPO, EPOR and MLTR1 shifted at P7 and P21, with prominent CHORIO-induced changes in mRNA expression. Reductions at P21 were concomitant with increased serum EPO levels in CHORIO rats compared to controls and variable MLT levels. Discussion: These data reveal that commensurate with robust inflammation through the maternal placental-fetal axis, CHORIO impacts EPO, MLT, SIRT1, and HIF signal transduction defined by dynamic changes in EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α mRNA, and EPO protein. Notably, ligand-receptor mismatch, tissue compartment differential regulation, and non-receptor-mediated signaling highlight the importance, complexity and nuance of neural and immune cell development and provide essential clues to mechanisms of injury in PBI. As the placenta, immune cells, and neural cells share many common, developmentally regulated signal transduction pathways, further studies are needed to clarify the perinatal dynamics of EPO and MLT signaling and to capitalize on therapies that target endogenous neurorepair mechanisms.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Hamimi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan L. Hellinger
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O. Angel Odukoya
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sankar Muthukumar
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vikram Vasan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Riley Sevensky
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shannon E. Kirk
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander Gall
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Timothy Heck
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|