Shedid SM, Abdel-Aziz N, Algeda FR, Saada HN. The Mitigating Effect of Melatonin Against Radiation-Induced Inflammation and Disturbance of Reproductive Hormones in Female Albino Rats.
Dose Response 2025;
23:15593258251323796. [PMID:
40027956 PMCID:
PMC11872049 DOI:
10.1177/15593258251323796]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/08/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
Objectives: Melatonin has been documented as an antioxidant agent. Numerous investigations have documented melatonin's radioprotective impact; however, investigation of its role post-irradiation requires further studies. Thus, the present study investigated melatonin's mitigating effect against radiation-induced alteration in the ovaries and reproductive hormones in female albino rats. Methods: Melatonin (10 mg/kg body weight, i. p.) was administered to the animals for 7, 11, and 15 days after whole-body exposure to 4 Gy γ-radiation. Results: The results demonstrated that melatonin has significantly attenuated the radiation-induced oxidative stress in the ovary, manifested by a decrease in protein carbonyl and malondialdehyde in conjunction with an increase in total antioxidant capacity. In addition, melatonin has alleviated the radiation-induced increase of the pro-inflammatory cytokines (tumor necrotic factor alpha, interleukin-6, interleukin-1 beta) and caspase-3 levels in the serum. These results were accompanied by a noticeable improvement in serum E2-estradiol, testosterone, progesterone, follicle-stimulating hormone, and luteinizing hormone compared to their respective levels in the irradiated group. Conclusion: It could be concluded that melatonin is an effective agent for minimizing the deleterious impacts of radiation on the ovaries and reproductive hormones through synergistic interdependence between anti-inflammatory, antioxidant, and anti-apoptotic activities.
Collapse