1
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Romo-González M, Ijurko C, Alonso MT, Gómez de Cedrón M, Ramirez de Molina A, Soriano ME, Hernández-Hernández Á. NOX2 and NOX4 control mitochondrial function in chronic myeloid leukaemia. Free Radic Biol Med 2023; 198:92-108. [PMID: 36764627 DOI: 10.1016/j.freeradbiomed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Cancer cells are characterised by an elevated metabolic plasticity and enhanced production of reactive oxygen species (ROS), two features acknowledged as hallmarks in cancer, with a high translational potential to the therapeutic setting. These aspects, that have been traditionally studied separately, are in fact intimately intermingled. As part of their transforming activity, some oncogenes stimulate rewiring of metabolic processes, whilst simultaneously promoting increased production of intracellular ROS. In this scenario the latest discoveries suggest the relevance of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to connect ROS production and metabolic control. Here we have analysed the relevance of NOX2 and NOX4 in the regulation of metabolism in chronic myeloid leukaemia (CML), a neoplasia driven by the expression of the breakpoint cluster region-Abelson fusion oncogene (BCR-ABL). Silencing of NOX2 enhances glycolysis and oxidative phosphorylation rates, together with an enhanced production of mitochondrial ROS and a decrease in mitochondrial DNA copy number, which reflects mitochondrial dysfunction. NOX4 expression was upregulated upon NOX2 silencing, and this was required to alter mitochondrial function. Our results support the relevance of NOX2 to regulate metabolism-related signalling pathways downstream of BCR-ABL. Overall we show that NOX2, through the regulation of NOX4 expression, controls metabolism and mitochondrial function in CML cells. This notion was confirmed by transcriptomic analyses, that strongly relate both NOX isoforms with metabolism regulation in CML.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | | | | | | | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain.
| |
Collapse
|
3
|
Romo-González M, Ijurko C, Hernández-Hernández Á. Reactive Oxygen Species and Metabolism in Leukemia: A Dangerous Liaison. Front Immunol 2022; 13:889875. [PMID: 35757686 PMCID: PMC9218220 DOI: 10.3389/fimmu.2022.889875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS), previously considered toxic by-products of aerobic metabolism, are increasingly recognized as regulators of cellular signaling. Keeping ROS levels low is essential to safeguard the self-renewal capacity of hematopoietic stem cells (HSC). HSC reside in a hypoxic environment and have been shown to be highly dependent on the glycolytic pathway to meet their energy requirements. However, when the differentiation machinery is activated, there is an essential enhancement of ROS together with a metabolic shift toward oxidative metabolism. Initiating and sustaining leukemia depend on the activity of leukemic stem cells (LSC). LSC also show low ROS levels, but unlike HSC, LSC rely on oxygen to meet their metabolic energetic requirements through mitochondrial respiration. In contrast, leukemic blasts show high ROS levels and great metabolic plasticity, both of which seem to sustain their invasiveness. Oxidative stress and metabolism rewiring are recognized as hallmarks of cancer that are intimately intermingled. Here we present a detailed overview of these two features, sustained at different levels, that support a two-way relationship in leukemia. Modifying ROS levels and targeting metabolism are interesting therapeutic approaches. Therefore, we provide the most recent evidence on the modulation of oxidative stress and metabolism as a suitable anti-leukemic approach.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Dong H, Wang L, Guo M, Stagos D, Giakountis A, Trachana V, Lin X, Liu Y, Liu M. Antioxidant and Anticancer Activities of Synthesized Methylated and Acetylated Derivatives of Natural Bromophenols. Antioxidants (Basel) 2022; 11:antiox11040786. [PMID: 35453471 PMCID: PMC9032154 DOI: 10.3390/antiox11040786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Natural bromophenols are important secondary metabolites in marine algae. Derivatives of these bromophenol are potential candidates for the drug development due to their biological activities, such as antioxidant, anticancer, anti-diabetic and anti-inflammatory activity. In our present study, we have designed and synthesized a series of new methylated and acetylated bromophenol derivatives from easily available materials using simple operation procedures and evaluated their antioxidant and anticancer activities on the cellular level. The results showed that 2.,3-dibromo-1-(((2-bromo-4,5-dimethoxybenzyl)oxy)methyl)-4,5-dimethoxybenzene (3b-9) and (oxybis(methylene))bis(4-bromo-6-methoxy-3,1-phenylene) diacetate (4b-3) compounds ameliorated H2O2-induced oxidative damage and ROS generation in HaCaT keratinocytes. Compounds 2.,3-dibromo-1-(((2-bromo-4,5-dimethoxybenzyl)oxy)methyl)-4,5-dimethoxybenzene (3b-9) and (oxybis(methylene) )bis(4-bromo-6-methoxy-3,1-phenylene) diacetate (4b-3) also increased the TrxR1 and HO-1 expression while not affecting Nrf2 expression in HaCaT. In addition, compounds (oxybis(methylene)bis(2-bromo-6-methoxy-4,1-phenylene) diacetate (4b-4) inhibited the viability and induced apoptosis of leukemia K562 cells while not affecting the cell cycle distribution. The present work indicated that some of these bromophenol derivatives possess significant antioxidant and anticancer potential, which merits further investigation.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.D.); (L.W.); (M.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.D.); (L.W.); (M.G.)
| | - Meng Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.D.); (L.W.); (M.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (D.S.); (A.G.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (D.S.); (A.G.)
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece;
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Jiangyang, Luzhou 646000, China;
| | - Yankai Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.D.); (L.W.); (M.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Y.L.); (M.L.); Tel.: +86-532-8203-1905 (Y.L.); +86-532-8203-1980 (M.L.)
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.D.); (L.W.); (M.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Y.L.); (M.L.); Tel.: +86-532-8203-1905 (Y.L.); +86-532-8203-1980 (M.L.)
| |
Collapse
|
5
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
6
|
Wen T, Yang A, Wang T, Jia M, Lai X, Meng J, Liu J, Han B, Xu H. Ultra-small platinum nanoparticles on gold nanorods induced intracellular ROS fluctuation to drive megakaryocytic differentiation of leukemia cells. Biomater Sci 2020; 8:6204-6211. [PMID: 33078787 DOI: 10.1039/d0bm01547d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic myeloid leukemia (CML) is a kind of hematological malignancy featured with retarded differentiation that is highly linked to the level of intracellular reactive oxygen species (ROS). In this work, ultra-small platinum nanoparticles deposited on gold nanorods (Au@Pt) were synthesized and applied on the CML cells. It was shown that Au@Pt had multienzyme-like activities that induced a fluctuation of the intracellular ROS level over the incubation time, depending on their temporal locations in the cells. The ROS fluctuation triggered cellular autophagy and enhanced the level of autophagic protein Beclin-1, which caused the degradation of fusion protein BCR-ABL, the key factor of retarded differentiation and led to the downregulation of phosphorylation of PI3K and AKT. These interactions together broke retarded differentiation and drove the CML cells to differentiate towards megakaryocytes, which is of great significance in enhancing leukemic cell apoptosis. Therefore, Au@Pt exhibited a novel function and promising therapeutic potential for the CML treatment.
Collapse
Affiliation(s)
- Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Aiyun Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Tao Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Mengfan Jia
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Xinning Lai
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| | - Bing Han
- Department of hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Beijing 100730, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No 5, Dongdan Santiao, Beijing 100005, China.
| |
Collapse
|