1
|
Ashour NA, El-Masry TA, El-Mahdy NA, E Khodier A, Elmorshedy KE, Gaballa MMS, Negm WA. A novel combination therapy using Dapagliflozin and Cycas media extract in experimentally induced diabetic wounds by targeting novel pathways in wound healing. Int Immunopharmacol 2025; 144:113618. [PMID: 39615109 DOI: 10.1016/j.intimp.2024.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Diabetes mellitus, a globally prevalent condition, often complicates wound healing, leading to chronic, non-healing wounds. This study explores a novel combination therapy using Dapagliflozin and Cycas media extract for treating experimentally induced diabetic wounds in rats. By targeting the Notch signaling pathway, a critical pathway in wound healing, this research investigates the efficacy of this combination therapy in accelerating wound repair. Forty-two male Wistar albino rats were divided into control and treatment groups, receiving various Dapagliflozin and Cycas media gel combinations. The study evaluated wound healing, biochemical markers, gene expression, and histopathological changes. The findings suggest that the combination therapy significantly enhances wound healing, modulates oxidative stress, alters inflammatory responses, and influences key genes in the Notch pathway. This research provides a new perspective on diabetic wound management and underlines the potential of combining Dapagliflozin and Cycas media as a therapeutic approach.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Nageh A El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed E Khodier
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Kadreya E Elmorshedy
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; Department of Anatomy, Faculty of Medicine, King Khaled University, Saudi Arabia
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Li M, Wu J, Yang T, Zhao Y, Ren P, Chang L, Shi P, Yang J, Liu Y, Li X, Wang P, Cao Y. Engineered Biomimetic Nanoparticles-Mediated Targeting Delivery of Allicin Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Ferroptosis. Int J Nanomedicine 2024; 19:11275-11292. [PMID: 39524923 PMCID: PMC11550785 DOI: 10.2147/ijn.s478276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cardiac microvascular damage is substantially related with the onset of myocardial ischaemia-reperfusion (IR) injury. Reportedly, allicin (AL) effectively protects the cardiac microvascular system from IR injury. However, the unsatisfactory therapeutic efficacy of current drugs and insufficient drug delivery to the damaged heart are major concerns. Here, inspired by the natural interaction between neutrophils and inflamed cardiac microvascular endothelial cells (CMECs), a neutrophil membrane-camouflaged nanoparticle for non-invasive active-targeting therapy for IR injury by improving drug delivery to the injured heart is constructed. Methods In this study, we engineered mesoporous silica nanoparticles (MSNs) coated with a neutrophil membrane to act as a drug delivery system, encapsulating AL. The potential of the nanoparticles (named AL@MSNs@NM) for specific targeting of infarcted myocardium was assessed using small animal vivo imaging system. The cardiac function of AL@MSNs@NM after treatment was evaluated by Animal Ultrasound Imaging system, HE staining, and Laser Speckle Imaging System. The therapeutic mechanism was analyzed by ELISA kits, immunofluorescence, and PCR. Results We discovered that AL@MSNs@NM significantly improves cardiac function index, reduced infarct size and fibrosis, increased vascular perfusion in ischemic areas, and also promoted the function of CMECs, including migration, tube formation, shear stress adaptation, and nitric oxide production. Further research revealed that AL@MSNs@NM have cardio-protective functions in IR rats by inhibiting CMEC ferroptosis and increasing platelet endothelial cell adhesion molecule-1 (PECAM-1) expression. Conclusion Our results indicated that AL@MSNs@NM significantly reversed CMEC ferroptosis and increased PECAM-1 expression, enhanced cardiac function, and reduced myocardial infarction size. Therefore, this strategy demonstrates that engineered biomimetic nanotechnology effectively delivers AL for targeted therapy of myocardial infarction.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jiabi Wu
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Tao Yang
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yuhang Zhao
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Ping Ren
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Lingling Chang
- Department of Physiology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Pilong Shi
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Jing Yang
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yuhang Liu
- Department of Physiology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Xiaolei Li
- Department of Pathology, Jiangsu College of Nursing, Jiangsu, 223003, People’s Republic of China
| | - Peng Wang
- Department of Physiology, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| | - Yonggang Cao
- Department of Pharmaceutics, Harbin Medical University, Heilongjiang, 163319, People’s Republic of China
| |
Collapse
|
3
|
Fang X, Zhang Y, Wu H, Wang H, Miao R, Wei J, Zhang Y, Tian J, Tong X. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links. Int J Biochem Cell Biol 2024; 170:106569. [PMID: 38556159 DOI: 10.1016/j.biocel.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Jilin 130117, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Yi M, Cruz Cisneros L, Cho EJ, Alexander M, Kimelman FA, Swentek L, Ferrey A, Tantisattamo E, Ichii H. Nrf2 Pathway and Oxidative Stress as a Common Target for Treatment of Diabetes and Its Comorbidities. Int J Mol Sci 2024; 25:821. [PMID: 38255895 PMCID: PMC10815857 DOI: 10.3390/ijms25020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is a chronic disease that induces many comorbidities, including cardiovascular disease, nephropathy, and liver damage. Many mechanisms have been suggested as to how diabetes leads to these comorbidities, of which increased oxidative stress in diabetic patients has been strongly implicated. Limited knowledge of antioxidative antidiabetic drugs and substances that can address diabetic comorbidities through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway calls for detailed investigation. This review will describe how diabetes increases oxidative stress, the general impact of that oxidative stress, and how oxidative stress primarily contributes to diabetic comorbidities. It will also address how treatments for diabetes, especially focusing on their effects on the Nrf2 antioxidative pathway, have been shown to similarly affect the Nrf2 pathway of the heart, kidney, and liver systems. This review demonstrates that the Nrf2 pathway is a common pathogenic component of diabetes and its associated comorbidities, potentially identifying this pathway as a target to guide future treatments.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Leslie Cruz Cisneros
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Eric J. Cho
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Francesca A. Kimelman
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| |
Collapse
|
5
|
Huang Y, He B, Song C, Long X, He J, Huang Y, Liu L. Oxymatrine ameliorates myocardial injury by inhibiting oxidative stress and apoptosis via the Nrf2/HO-1 and JAK/STAT pathways in type 2 diabetic rats. BMC Complement Med Ther 2023; 23:2. [PMID: 36597092 PMCID: PMC9808977 DOI: 10.1186/s12906-022-03818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The necessity of increasing the efficiency of organ preservation has encouraged researchers to explore the mechanisms underlying diabetes-related myocardial injuries. This study intended to evaluate the protective effects of oxymatrine (OMT) in myocardial injury caused by type 2 diabetes mellitus. A model of diabetic rats was established to simulate type 2 diabetes mellitus using an intraperitoneal injection of a single dose of 65 mg/kg streptozotocin with a high-fat and high-cholesterol diet, and diabetic rats were subsequently treated with OMT (60, 120 mg/kg) by gavage for 8 weeks. Thereafter, diabetic rats demonstrated notable decreases in left ventricular systolic pressure (LVSP), ±dp/dtmax, and in the activities of glutathione peroxidase, superoxide dismutase, and catalase. Moreover, we found notable increases in left ventricular end-diastolic pressure, fasting blood glucose, and malondialdehyde, as well as changes in cell apoptosis and decreased expression levels of Nrf2, HO-1, tyrosine protein kinase JAK (JAK), and signal transducer and transcription activator (STAT). Treatment with OMT alleviated all of the measured parameters. Collectively, these findings suggest that activation of the Nrf2/HO-1 and inhibition of the JAK/STAT signaling are involved in mediating the cardioprotective effects of OMT and also highlight the benefits of OMT in ameliorating myocardial injury in diabetic rats.
Collapse
Affiliation(s)
- Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Bin He
- grid.67293.39School of Nursing, Hunan University of Medicine, Huaihua, 418000 China
| | - Chong Song
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, affiliated to University of South China, Huaihua, 418000 Hunan China
| | - Yansong Huang
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| | - Lijing Liu
- Medicine School, Changsha Social Work College, Changsha, 410004 Hunan China
| |
Collapse
|
6
|
Wu C, Chen RL, Wang Y, Wu WY, Li G. Acacetin alleviates myocardial ischaemia/reperfusion injury by inhibiting oxidative stress and apoptosis via the Nrf-2/HO-1 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:553-561. [PMID: 35244510 PMCID: PMC8903787 DOI: 10.1080/13880209.2022.2041675] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Acacetin is a natural source of flavonoids with anti-inflammatory and antioxidant effects. OBJECTIVE This study determines acacetin's protective effect and mechanism on myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS Sprague-Dawley rats were divided into sham and I/R injury and treatment with acacetin. Acacetin (10 mg/kg) was subcutaneously injected for 7 days. ECG and echocardiography were conducted to determine arrhythmia and heart function. The pathological characters of the heart were determined with triphenyl tetrazolium chloride staining, Haematoxylin & Eosin staining, and Masson staining. Expression of proteins in infarct tissues was examined with western blots. RESULTS Administrated with acacetin in I/R rats significantly reduced the arrhythmia score from 4.90 to 2.50 and the reperfusion arrhythmia score from 3.79 to 1.82 in the vehicle or the acacetin group, respectively. LVEF was improved from 33.5% in the I/R group to 43.7% in the acacetin group, LVFS was increased from 16.4% to 24.5%, LVIDs was decreased from 6.5 to 5.3 mm. The inflammatory cell infiltration, myocardial fibrosis, and collagen 1 and 3 were reduced by acacetin. Acacetin promoted SOD and decreased MDA. In myocardial tissues, the expression level of TLR4 and IL-6 were restrained, and IL-10 was promoted. Apoptotic protein Bax was suppressed, and anti-apoptotic protein Bcl-2 was promoted in the acacetin group. Interestingly, the transcription factor Nrf-2/HO-1 pathway was also reversed by acacetin. DISCUSSION AND CONCLUSION Our findings indicated that acacetin has a potential therapeutic effect in clinical application on treating I/R-induced heart injury.
Collapse
Affiliation(s)
- Chan Wu
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ruo-Lan Chen
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei-Yin Wu
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Wei-Yin Wu Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian Province361015, People’s Republic of China
| | - Gang Li
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- CONTACT Gang Li ;
| |
Collapse
|
7
|
Sun D, Zhu Z, Zhang Y, Bai R, Zhu F, Shan Z, Ma C, Yang J. Relation of genetic polymorphisms in microRNAs with diastolic and systolic function in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2022; 32:2877-2882. [PMID: 36180298 DOI: 10.1016/j.numecd.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS Type 2 diabetes mellitus (T2DM) has high risk of developing cardiac dysfunction, increasing of either cardiovascular death or hospitalization for heart failure. MicroRNAs (miRNA) affect cardiac function of T2DM. The aim of this study was to investigate the relationships between five miRNA single nucleotide polymorphisms (SNP) and diastolic and systolic function of T2DM. METHODS AND RESULTS Three hundred untreated T2DM subjects were included. Each subject underwent SNP genotyping, conventional echocardiography, tissue doppler imaging, and speckle tracking imaging. The effects of miRNA SNPs on diastolic and systolic function were evaluated. The diastolic function of T2DM subjects with miR-133a-1-rs8089787 wild genotype or let-7f-rs10877887 variant genotype was lower than those with miR-133a-1-rs8089787 variant genotype or let-7f-rs10877887 wild genotype, manifesting as higher left atrial volume index, lower mean E', and higher E/E' (P < 0.05). There were no significant effects of miR-133a-2-rs13040413, let-7a-1-rs13293512 and miR-27a-rs895819 on the diastolic function of T2DM subjects (P > 0.05). These five miRNA SNPs had no effect on the systolic function of T2DM subjects (P > 0.05). CONCLUSIONS MiRNA-133a-1-rs8089787 and let-7f-rs10877887 were associated with impaired cardiac diastolic function in T2DM. The findings may be a promising therapeutic targets for preventing diastolic dysfunction in T2DM.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang 110016, China; Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zaihan Zhu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanfen Zhang
- Department of Ultrasonography, The People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Ruocen Bai
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Fang Zhu
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
The Effect of miR-505-5p on Inhibition of Serum Uromodulin Ameliorates Myocardial Inflammation and Apoptosis Induced by Ischemia-Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3521971. [PMID: 36225178 PMCID: PMC9550459 DOI: 10.1155/2022/3521971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Background It has been found that miR-505-5p is closely related to cardiovascular metabolic risk factors. Nonetheless, there is little research analyzing miR-505-5p for its role as well as molecular mechanism in myocardial injury caused by ischemia-reperfusion (I/R). Methods This work utilized quantitative reverse transcriptase PCR (qRT-PCR) for detecting miR-505-5p and serum uromodulin (sUmod) levels. sUmod, interleukin-1beta (IL-1β), IL-6, IL-10, caspase7, caspase9, tumor necrosis factor-alpha (TNF-α), Bax, and Bcl-xL expression was detected by western blot. Bioinformatics database was used for target prediction and miR-505-5's target was determined by luciferase reporter gene assay. Results Relative to sham group, sUmod was highly expressed within myocardial I/R injury (MIRI), whereas sUmod silencing significantly decreased the heart weight/body weight ratio, reduced serum myocardial enzymes expression, ameliorated I/R-mediated myocardial apoptosis, and inflammation. TargetScan bioinformatics database and luciferase reporter genes confirmed that sUmod was miR-505-5p's direct target gene, besides, miR-505-5p overexpression significantly improved the myocardial injury score, increased IL-10, decreased TNF-α, IL-1β, IL-6 expression, decreased caspase7, caspase9, Bax expression, and increased Bcl-xL expression. More importantly, overexpression of sUmod abolished miR-505-5p overexpression's role in I/R-mediated myocardial apoptosis and inflammation. Conclusion miR-505-5p can improve I/R-mediated myocardial apoptosis and inflammation by targeting sUmod. In this study, miR-505-5p is related to MIRI pathogenesis, which provides the new possible targeted therapy in patients with MIRI.
Collapse
|
9
|
Li X, Bian L, Zhao X, He D, Liu G, Tang DW, Li Z, Wu J. Nanoparticles capable of managing hypoglycemia and preventing myocardial ischemia‐reperfusion injury. J Appl Polym Sci 2022. [DOI: 10.1002/app.51758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Li
- Cardiothoracic and Great Vascular Surgery Xianyang First People's Hospital Xianyang China
| | - Ligong Bian
- College of Clinical Medical Kunming Medical University Kunming China
| | - Xi Zhao
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Dan He
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Guohua Liu
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Di Wei Tang
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| | - Zhiqin Li
- Cardiothoracic and Great Vascular Surgery Xianyang First People's Hospital Xianyang China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation Yunnan University of Chinese Medicine Kunming China
| |
Collapse
|
10
|
Yang CC, Liao PH, Cheng YH, Chien CY, Cheng KH, Chien CT. Diabetes associated with hypertension exacerbated oxidative stress-mediated inflammation, apoptosis and autophagy leading to erectile dysfunction in rats. J Chin Med Assoc 2022; 85:346-357. [PMID: 35019864 DOI: 10.1097/jcma.0000000000000691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Diabetes or hypertension contributes to erectile dysfunction (ED). We hypothesized that excess reactive oxygen species (ROS) production evoked by diabetes combined with hypertension may further suppress endothelial nitric oxide (NO) expression/activity and promote oxidative stress in the ED penis. METHODS Twenty-four adult male Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were divided into four groups: normal WKY, diabetic WKY, normal SHR and diabetic SHR. Intraperitoneal streptozotocin (65 mg/kg) was applied to induce type I diabetes. After 4-week diabetes and/or hypertension induction, we determined the intra-cavernous pressure (ICP) using electrical stimulation of cavernous nerves, intra-cavernosum NO amount using an electrochemical NO probe, and blood ROS using an ultrasensitive chemiluminescence-amplified analyzer. Western blot analysis and immunohistochemistry were used to explore the pathophysiologic mechanisms of inflammation, apoptosis and autophagy in the penis. A novel NO donor, CysaCysd Lu-5 (CCL5, (RCH2CH2S)(R'R"CHCH2S)Fe(NO)2, 1-4 µg), was intravenously administered to these ED rats for evaluating their ICP responses. RESULTS In the baseline status, the lucigenin- and luminol-amplified blood ROS were significantly enhanced in the diabetic SHR rats vs normal WKY rats. Significantly decreased ICP, eNOS expression and NO amount were found in the normal SHR, diabetic WKY, and diabetic SHR vs normal WKY rats. Intravenous NO donor L-Arginine markedly increased ICP and NO amount, whereas eNOS inhibitor, Nω-Nitro-L-Arginine methyl ester hydrochloride depressed ICP in all four groups. Diabetes and/or hypertension alone increased fibrosis, proinflammatory NF-kB/ICAM-1 expression, mast cell numbers, CD68 expression and infiltration, Caspase 3-mediated apoptosis, Beclin-1/LC3-II-mediated autophagy and mild Nrf-2/HO-1 expression and depressed eNOS expression in the ED penis. The novel NO donor, CCL5, was more efficient than L-arginine to improve diabetes and/or hypertension-induced ED by the significant increase of ICP. CONCLUSION Diabetes combined with hypertension synergistically exacerbated ED through enhanced oxidative stress, inflammation, apoptosis and autophagy and depressed eNOS activity and NO production.
Collapse
Affiliation(s)
- Chih-Ching Yang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Office of Public Relation of Ministry of Health and Welfare, Taipei, Taiwan, ROC
- Center for General Education, Mackay College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Pin-Hao Liao
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Yu-Hsiuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Chen-Yen Chien
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Kuo-Hsin Cheng
- Division of General Surgery, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Lu C, Liu L, Chen S, Niu J, Li S, Xie W, Cheng X. Azathioprine pretreatment ameliorates myocardial ischaemia reperfusion injury in diabetic rats by reducing oxidative stress, apoptosis, and inflammation. Clin Exp Pharmacol Physiol 2021; 48:1621-1632. [PMID: 34370882 PMCID: PMC9291025 DOI: 10.1111/1440-1681.13569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This study was presented to observe the therapeutic effects of azathioprine (AZA) pretreatment on myocardial ischaemia reperfusion (I/R) damage in diabetic rats. All rats were randomly separated into control + sham operation; control +I/R; diabetes mellitus (DM) +I/R and DM +I/R + AZA groups. Diabetic rat models were established by intraperitoneally injecting 60 mg/kg streptozotocin (STZ). Diabetic rats were given 3 mg/kg AZA daily by gavage for 5 days. Then, myocardial I/R rat models were constructed. Myocardial infarction size and myocardial damage were respectively detected by TTC and H&E staining. Cardiac injury markers (CK-MB and MPO) and oxidative stress factors (SOD and MDA) were measured via ELISA. The protein expression of apoptotic markers (Caspase8, Caspase3, BAX and Bcl2), inflammatory factors (TLR4 and TNF-α) and AKT1/GSK3β in myocardial tissues was measured by western blot, immunohistochemistry or immunofluorescence. Data showed that AZA pretreatment could lessen myocardial infarction size and myocardial damage, and could down-regulate serum CK-MB, MPO, SOD and MDA levels in diabetic rats under I/R. Furthermore, AZA pretreatment decreased Caspase8, Caspase3, BAX, TLR4 and TNF-α expression, and increased Bcl2 expression in myocardial tissues of diabetic rats following I/R. Also, AZA pretreatment lowered AKT1, p-AKT1, GSK3β and p-GSK3β expression in diabetic heart after I/R. This study found that AZA may reduce myocardial injury in diabetic rats following I/R via reducing oxidative stress, cardiomyocyte apoptosis, and inflammatory response, which could be related to AKT1/GSK3β pathway inactivation.
Collapse
Affiliation(s)
- Cuijie Lu
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Ling Liu
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Shuai Chen
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Junfei Niu
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Sheng Li
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Wenxian Xie
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Xiang Cheng
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| |
Collapse
|
12
|
Wang R, Wang M, Liu B, Xu H, Ye J, Sun X, Sun G. Calenduloside E protects against myocardial ischemia-reperfusion injury induced calcium overload by enhancing autophagy and inhibiting L-type Ca 2+ channels through BAG3. Biomed Pharmacother 2021; 145:112432. [PMID: 34798472 DOI: 10.1016/j.biopha.2021.112432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Calenduloside E (CE) is a saponin isolated from Aralia elata (Miq) Seem, which has anti-cardiovascular disease effects. This study aims to evaluate the anti-myocardial ischemia-reperfusion injury (MIRI) mechanisms of CE and regulation of BAG3 on calcium overload. We adopted siRNA to interfere with BAG3 expression in H9c2 cardiomyocytes and used adenovirus to interfere with BAG3 expression (Ad-BAG3) in primary neonatal rat cardiomyocytes (PNRCMs) to clarify the role of BAG3 in mitigating MIRI by CE. The results showed that CE reduced calcium overload, and Ad-BAG3 had a significant regulatory effect on L-type Ca2+ channels (LTCC) but no effects on other calcium-related proteins. And BAG3 and LTCC were colocalized in myocardial tissue and BAG3 inhibited LTCC expression. Surprisingly, CE had no regulatory effect on LTCC mRNA, but CE promoted LTCC degradation through the autophagy-lysosomal pathway rather than the ubiquitination-protease pathway. Autophagy inhibitor played a negative regulation of cardiomyocyte contraction rhythm and field potential signals. Ad-BAG3 inhibited autophagy by regulating the expression of autophagy-related proteins and autophagy agonist treatment suppressed calcium overload. Therefore, CE promoted autophagy through BAG3, thereby regulating LTCC expression, inhibiting calcium overload, and ultimately reducing MIRI.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361015, Fujian, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Bo Liu
- Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Huibo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun 130021, Jilin, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
13
|
Luo MY, Su JH, Gong SX, Liang N, Huang WQ, Chen W, Wang AP, Tian Y. Ferroptosis: New Dawn for Overcoming the Cardio-Cerebrovascular Diseases. Front Cell Dev Biol 2021; 9:733908. [PMID: 34858973 PMCID: PMC8632439 DOI: 10.3389/fcell.2021.733908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
The dynamic balance of cardiomyocytes and neurons is essential to maintain the normal physiological functions of heart and brain. If excessive cells die in tissues, serious Cardio-Cerebrovascular Diseases would occur, namely, hypertension, myocardial infarction, and ischemic stroke. The regulation of cell death plays a role in promoting or alleviating Cardio-Cerebrovascular Diseases. Ferroptosis is an iron-dependent new type of cell death that has been proved to occur in a variety of diseases. In our review, we focus on the critical role of ferroptosis and its regulatory mechanisms involved in Cardio-Cerebrovascular Diseases, and discuss the important function of ferroptosis-related inhibitors in order to propose potential implications for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
14
|
Han RH, Huang HM, Han H, Chen H, Zeng F, Xie X, Liu DY, Cai Y, Zhang LQ, Liu X, Xia ZY, Tang J. Propofol postconditioning ameliorates hypoxia/reoxygenation induced H9c2 cell apoptosis and autophagy via upregulating forkhead transcription factors under hyperglycemia. Mil Med Res 2021; 8:58. [PMID: 34753510 PMCID: PMC8579603 DOI: 10.1186/s40779-021-00353-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Administration of propofol, an intravenous anesthetic with antioxidant property, immediately at the onset of post-ischemic reperfusion (propofol postconditioning, P-PostC) has been shown to confer cardioprotection against ischemia-reperfusion injury, while the underlying mechanism remains incompletely understood. The FoxO transcription factors are reported to play critical roles in activating cardiomyocyte survival signaling throughout the process of cellular injuries induced by oxidative stress and are also involved in hypoxic postconditioning mediated neuroprotection, however, the role of FoxO in postconditioning mediated protection in the heart and in particular in high glucose condition is unknown. METHODS Rat heart-derived H9c2 cells were exposed to high glucose (HG) for 48 h (h), then subjected to hypoxia/reoxygenation (H/R, composed of 8 h of hypoxia followed by 12 h of reoxygenation) in the absence or presence of postconditioning with various concentrations of propofol (P-PostC) at the onset of reoxygenation. After having identified the optical concentration of propofol, H9c2 cells were subjected to H/R and P-PostC in the absence or presence of FoxO1 or FoxO3a gene silencing to explore their roles in P-PostC mediated protection against apoptotic and autophagic cell deaths under hyperglycemia. RESULTS The results showed that HG with or without H/R decreased cell viability, increased lactate dehydrogenase (LDH) leakage and the production of reactive oxygen species (ROS) in H9c2 cells, all of which were significantly reversed by propofol (P-PostC), especially at the concentration of 25 µmol/L (P25) (all P < 0.05, NC vs. HG; HG vs. HG + HR; HG + HR + P12.5 or HG + HR + P25 or HG + HR + P50 vs. HG + HR). Moreover, we found that propofol (P25) decreased H9c2 cells apoptosis and autophagy that were concomitant with increased FoxO1 and FoxO3a expression (all P < 0.05, HG + HR + P25 vs. HG + HR). The protective effects of propofol (P25) against H/R injury were reversed by silencing FoxO1 or FoxO3a (all P < 0.05, HG + HR + P25 vs. HG + HR + P25 + siRNA-1 or HG + HR + P25 + siRNA-5). CONCLUSION It is concluded that propofol postconditioning attenuated H9c2 cardiac cells apoptosis and autophagy induced by H/R injury through upregulating FoxO1 and FoxO3a under hyperglycemia.
Collapse
Affiliation(s)
- Rong-Hui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - He-Meng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Hong Han
- Department of Anesthesiology, the Eighth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 518000, China
| | - Hao Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Fei Zeng
- Department of Anesthesiology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510000, China
| | - Xiang Xie
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan-Yong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, China
| | - Liang-Qing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Xin Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, 999077, Hong Kong SAR, China.
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, 57 South Renming Avenue Xiashan District, Zhanjiang City, 524000, Guandong Province, China.
| |
Collapse
|
15
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Aldini G, de Courten B, Regazzoni L, Gilardoni E, Ferrario G, Baron G, Altomare A, D’Amato A, Vistoli G, Carini M. Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radic Res 2020; 55:321-330. [DOI: 10.1080/10715762.2020.1856830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|