1
|
Valentim-Coelho C, Saraiva J, Osório H, Antunes M, Vaz F, Neves S, Pinto P, Bárbara C, Penque D. Red blood cell proteomic profiling in mild and severe obstructive sleep apnea patients before and after positive airway pressure treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167767. [PMID: 40043591 DOI: 10.1016/j.bbadis.2025.167767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/05/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Obstructive Sleep Apnea (OSA) is characterized by recurrent-episodes of apneas/hypopneas during sleep, leading to recurrent intermittent-hypoxia and sleep fragmentation. Non-treated OSA can result in cardiometabolic diseases. In this study, we applied a shotgun-proteomics strategy to deeper investigate the red blood cell-(RBC) homeostasis regulation in the context of OSA-severity and their response to six months of positive airway pressure (PAP)-treatment. RBC-samples from patients with Mild/Severe-OSA before/after-PAP treatment and patients as simple-snoring controls were selected. The mass-spectrometry raw-data was analysed by MaxQuant for protein identification/quantification followed by statistical Linear Models-(LM) and Linear Mixed Models-(LMM) to investigate OSA-severity effect and interaction with PAP, respectively. The functional/biological network analysis were performed by DAVID-platform. The results indicated that key-enzymes of the Embden-Meyerhof-Parnas (EMP)-glycolysis and pentose phosphate pathway-(PPP) were differentially changed in Severe-OSA, suggesting that the O2-dependent metabolic flux through EMP and PPP maybe compromised in these cells due to severe intermittent hypoxia/reoxygenation-induced oxidative-stress events in these patients. The Rapoport-Luebering-glycolytic shunt showed a significant downregulation across OSA-severity maybe to increase hemoglobin-O2 affinity to adapt to O2 low availability in the lung, although EMP-glycolysis showed decreased only in Severe-OSA. Proteins of the immunoproteasome were upregulated in Severe-OSA maybe to respond to severe oxidative-stress. In Mild-OSA, proteins related to the ubiquitination/neddylation-(Ub/Ned)-dependent proteasome system were upregulated. After PAP, proteins of Glycolysis and Ub/Ned-dependent proteasome system showed reactivated in Severe-OSA. In Mild-OSA, PAP induced upregulation of immunoproteasome proteins, suggesting that this treatment may increase oxidative-stress in these patients. Once validated these proteins maybe candidate biomarkers for OSA or OSA-therapy response.
Collapse
Affiliation(s)
- Cristina Valentim-Coelho
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| | - Joana Saraiva
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto - Ipatimup, 4200-135 Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações da Universidade de Lisboa e Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Fátima Vaz
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Sofia Neves
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Paula Pinto
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Cristina Bárbara
- Serviço de Pneumologia, Centro Hospitalar Lisboa Norte - CHLN, 1649-035 Lisboa, Portugal; Instituto de Saúde Ambiental - ISAMB, Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Deborah Penque
- Laboratório de Proteómica, Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge - INSA, 1649-016 Lisboa, Portugal; Centro de Toxicogenómica e Saúde Humana (ToxOmics), Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal.
| |
Collapse
|
2
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Hu J, Yang X, Ren J, Zhong S, Fan Q, Li W. Identification and verification of characteristic differentially expressed ferroptosis-related genes in osteosarcoma using bioinformatics analysis. Toxicol Mech Methods 2023; 33:781-795. [PMID: 37488941 DOI: 10.1080/15376516.2023.2240879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND This study identified and verified the characteristic differentially expressed ferroptosis-related genes (CDEFRGs) in osteosarcoma (OS). METHODS We extracted ferroptosis-related genes (FRGs), identified differentially expressed FRGs (DEFRGs) in OS, and conducted correlation analysis between DEFRGs. Next, we conducted GO and KEGG analyses to explore the biological functions and pathways of DEFRGs. Furthermore, we used LASSO and SVM-RFE algorithms to screen CDEFRGs, and evaluated its accuracy in diagnosing OS through ROC curves. Then, we demonstrated the molecular function and pathway enrichment of CDEFRGs through GSEA analysis. In addition, we evaluated the differences in immune cell infiltration between OS and NC groups, as well as the correlation between CDEFRGs expressions and immune cell infiltrations. Finally, the expression of CDEFRGs was verified through qRT-PCR, western blotting, and immunohistochemistry experiments. RESULTS We identified 51 DEFRGs and the expression relationship between them. GO and KEGG analysis revealed their key functions and important pathways. Based on four CDEFRGs (PEX3, CPEB1, NOX1, and ALOX5), we built the OS diagnostic model, and verified its accuracy. GSEA analysis further revealed the important functions and pathways of CDEFRGs. In addition, there were differences in immune cell infiltration between OS group and NC group, and CDEFRGs showed significant correlation with certain infiltrating immune cells. Finally, we validated the differential expression levels of four CDEFRGs through external experiments. CONCLUSIONS This study has shed light on the molecular pathological mechanism of OS and has offered novel perspectives for the early diagnosis and immune-targeted therapy of OS patients.
Collapse
Affiliation(s)
- Jianhua Hu
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Xi Yang
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Jing Ren
- Department of Spinal Surgery, Qujing No. 1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, Qujing, P. R. China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| | - Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, P. R. China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, P. R. China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, P. R. China
| |
Collapse
|
4
|
Hyperoxidized Peroxiredoxin 2 Is a Possible Biomarker for the Diagnosis of Obstructive Sleep Apnea. Antioxidants (Basel) 2022; 11:antiox11122486. [PMID: 36552694 PMCID: PMC9774165 DOI: 10.3390/antiox11122486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxiredoxin (Prx) 2 in red blood cells (RBCs) reacts with various reactive oxygen species and changes to hyperoxidized Prx2 (Prx2-SO2/3). Therefore, Prx2 may serve as an indicator of oxidative stress in vivo. This study aimed to analyze Prx2-SO2/3 levels in clinical samples to examine whether the oxidation state of Prx2 in human RBCs reflects the pathological condition of oxidative stress diseases. We first focused on obstructive sleep apnea (OSA), a hypoxic stress-induced disease of the respiratory system, and investigated the levels of Prx2-SO2/3 accumulated in the RBCs of OSA patients. In measurements on a small number of OSA patients and healthy subjects, levels of Prx2-SO2/3 accumulation in patients with OSA were clearly increased compared to those in healthy subjects. Hence, we proceeded to validate these findings with more samples collected from patients with OSA. The results revealed significantly higher levels of erythrocytic Prx2-SO2/3 in patients with OSA than in healthy subjects, as well as a positive correlation between the severity of OSA and Prx2-SO2/3 levels in the RBCs. Moreover, we performed a chromatographic study to show the structural changes of Prx2 due to hyperoxidation. Our findings demonstrated that the Prx2-SO2/3 molecules in RBCs from patients with OSA were considerably more hydrophilic than the reduced form of Prx2. These results implicate Prx2-SO2/3 as a promising candidate biomarker for OSA.
Collapse
|
5
|
Brun JF, Varlet-Marie E, Myzia J, Raynaud de Mauverger E, Pretorius E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites 2021; 12:4. [PMID: 35050126 PMCID: PMC8778269 DOI: 10.3390/metabo12010004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022] Open
Abstract
Many factors in the surrounding environment have been reported to influence erythrocyte deformability. It is likely that some influences represent reversible changes in erythrocyte rigidity that may be involved in physiological regulation, while others represent the early stages of eryptosis, i.e., the red cell self-programmed death. For example, erythrocyte rigidification during exercise is probably a reversible physiological mechanism, while the alterations of red blood cells (RBCs) observed in pathological conditions (inflammation, type 2 diabetes, and sickle-cell disease) are more likely to lead to eryptosis. The splenic clearance of rigid erythrocytes is the major regulator of RBC deformability. The physicochemical characteristics of the surrounding environment (thermal injury, pH, osmolality, oxidative stress, and plasma protein profile) also play a major role. However, there are many other factors that influence RBC deformability and eryptosis. In this comprehensive review, we discuss the various elements and circulating molecules that might influence RBCs and modify their deformability: purinergic signaling, gasotransmitters such as nitric oxide (NO), divalent cations (magnesium, zinc, and Fe2+), lactate, ketone bodies, blood lipids, and several circulating hormones. Meal composition (caloric and carbohydrate intake) also modifies RBC deformability. Therefore, RBC deformability appears to be under the influence of many factors. This suggests that several homeostatic regulatory loops adapt the red cell rigidity to the physiological conditions in order to cope with the need for oxygen or fuel delivery to tissues. Furthermore, many conditions appear to irreversibly damage red cells, resulting in their destruction and removal from the blood. These two categories of modifications to erythrocyte deformability should thus be differentiated.
Collapse
Affiliation(s)
- Jean-Frédéric Brun
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Emmanuelle Varlet-Marie
- UMR CNRS 5247-Institut des Biomolécules Max Mousseron (IBMM), Laboratoire du Département de Physicochimie et Biophysique, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 34090 Montpellier, France;
| | - Justine Myzia
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Eric Raynaud de Mauverger
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles-PHYMEDEXP, Unité D’explorations Métaboliques (CERAMM), Département de Physiologie Clinique, Université de Montpellier, Hôpital Lapeyronie-CHRU de Montpellier, 34295 Montpellier, France; (J.M.); (E.R.d.M.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 MATIELAND, Stellenbosch 7602, South Africa;
| |
Collapse
|