1
|
Nash L, Cheung VCK, Gupta A, Cheung RTH, He B, Liston M, Thomson D. The effects of age and physical activity status on muscle synergies when walking down slopes. Eur J Appl Physiol 2025; 125:1139-1156. [PMID: 39609289 DOI: 10.1007/s00421-024-05679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The aim of the current study was to determine whether gait control (muscle synergies) or gait stability (margin of stability (MoS)) were different between younger and older adults when walking on level or downhill slopes. Further, it sought to determine associations between either age or physical activity with muscle synergy widths. METHODS Ten healthy younger (28.1 ± 8.0 years) and ten healthy older (69.5 ± 6.3 years) adults walked at their preferred walking speed on a treadmill at different slopes (0˚, - 4˚ and - 8˚). Muscle synergies were extracted using non-negative matrix factorisation and compared between groups and walking slopes. Correlations between the full width at half maximum (FWHM) of the synergies' activations and weekly recreational physical activity minutes and age were also determined. RESULTS Younger and older adults both walked with similar muscle synergies across all tested slopes, with 4 synergies accounting for > 85% variance of overall muscle activity in both groups across all tested slopes, with high scalar products (≥ 0.86) for each synergy and slope. It was also demonstrated that physical activity and age had different associations with pooled muscle synergies across slopes, as weekly minutes spent in recreational physical activity were associated with the FWHM of a synergy activated at weight acceptance, whereas age was associated with the FWHM of synergies occurring at push off and foot clearance, respectively. CONCLUSION Our results suggest that healthy older and younger adults walk with similar muscle synergies on downhill slopes, and that physical activity and age influence different muscle synergies during walking.
Collapse
Affiliation(s)
- Laura Nash
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Amitabh Gupta
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Roy T H Cheung
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia
| | - Borong He
- School of Biomedical Sciences and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Daniel Thomson
- School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia.
| |
Collapse
|
2
|
Collimore AN, Pohlig RT, Awad LN. Minimum Electromyography Sensor Set Needed to Identify Age-Related Impairments in the Neuromuscular Control of Walking Using the Dynamic Motor Control Index. SENSORS (BASEL, SWITZERLAND) 2024; 24:7442. [PMID: 39685979 DOI: 10.3390/s24237442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
The dynamic motor control index is an emerging biomarker of age-related neuromuscular impairment. To date, it has been computed by quantifying the co-activity of eleven lower limb muscles. Because clinics that routinely employ electromyography typically collect from fewer muscles, a reduced muscle sensor set may improve the clinical usability of this metric of motor control. This study aimed to test if commonly used eight- and five-muscle electromyography (EMG) sensor sets produce similar dynamic motor control indices as the previously examined eleven-muscle sensor set and similarly differentiate across age subgroups. EMG data were collected during treadmill walking from 36 adults separated into young (N = 18, <35 yrs.), young-old (N = 13, 65-74 yrs.), and old-old (N = 5, ≥75 yrs.) subgroups. Dynamic motor control indices generated using the sensor set with eleven muscles correlated with the eight-muscle set (R2 = 0.70) but not the five-muscle set (R2 = 0.30). Regression models using the eleven-muscle (χ2(4) = 10.62, p = 0.031, Nagelkerke R2 = 0.297) and eight-muscle (χ2(4) = 9.418, p = 0.051, Nagelkerke R2 = 0.267) sets were significant and approaching significance, respectively, whereas the model for the five-muscle set was not significant (p = 0.663, Nagelkerke R2 = 0.073). In both the eleven-muscle (Wald χ2 = 5.16, p = 0.023, OR = 1.26) and eight-muscle models (Wald χ2 = 4.20, p = 0.04, OR = 1.19), a higher index significantly predicted being in the young group compared to the old-old group. Age-related differences in the neuromuscular control of walking can be detected using dynamic motor control indices generated using eleven- and eight-muscle sensor sets, increasing clinical usability of the dynamic motor control index.
Collapse
Affiliation(s)
- Ashley N Collimore
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE 19713, USA
| | - Louis N Awad
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
3
|
Kong L, Yang K, Li H, Wu X, Zhang Q. Comparison of Lower-Limb Muscle Synergies Between Young and Old People During Cycling Based on Electromyography Sensors-A Preliminary Cross-Sectional Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:6755. [PMID: 39460234 PMCID: PMC11511221 DOI: 10.3390/s24206755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/28/2024]
Abstract
The purpose of this study was to analyze the lower-limb muscle synergies of young and older adults during stationary cycling across various mechanical conditions to reveal adaptive strategies employed by the elderly to address various common pedaling tasks and function degradation. By comparing lower-limb muscle synergies during stationary cycling between young and old people, this study examined changes in muscle synergy patterns during exercise in older individuals. This is crucial for understanding neuromuscular degeneration and changes in movement patterns in older individuals. Sixteen young and sixteen older experienced cyclists were recruited to perform stationary cycling tasks at two levels of power (60 and 100 W) and three cadences (40, 60, and 90 rpm) in random order. The lower-limb muscle synergies and their inter- and intra-individual variability were analyzed. Three synergies were extracted in this study under all riding conditions in both groups while satisfying overall variance accounted for (VAF) > 85% and muscle VAF > 75%. The older adults exhibited lower variability in synergy vector two and a higher trend in the variability of activation coefficient three, as determined by calculating the variance ratio. Further analyses of muscle synergy structures revealed increased weighting in major contribution muscles, the forward-shifting peak activation in synergy one, and lower peak magnitude in synergy three among older adults. To produce the same cycling power and cadence as younger individuals, older adults make adaptive adjustments in muscle control-increased weighting in major contribution muscles, greater consistency in the use of primary force-producing synergies, and earlier peak activation of subsequent synergy.
Collapse
Affiliation(s)
- Li Kong
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China;
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Kun Yang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Haojie Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Xie Wu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China (X.W.)
| | - Qiang Zhang
- Institute for Biomechanics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Burke L, Khokhlova L, O'Flynn B, Tedesco S. Utilising dynamic motor control index to identify age-related differences in neuromuscular control. Hum Mov Sci 2024; 95:103200. [PMID: 38461747 DOI: 10.1016/j.humov.2024.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE Considering the relationship between aging and neuromuscular control decline, early detection of age-related changes can ensure that timely interventions are implemented to attenuate or restore neuromuscular deficits. The dynamic motor control index (DMCI), a measure based on variance accounted for (VAF) by one muscle synergy (MS), is a metric used to assess age-related changes in neuromuscular control. The aim of the study was to investigate the use of one-synergy VAF, and consecutively DMCI, in assessing age-related changes in neuromuscular control over a range of exercises with varying difficulty. METHODS Thirty-one subjects walked on a flat and inclined treadmill, as well as performed forward and lateral stepping up tasks. Motion and muscular activity were recorded, and muscle synergy analysis was conducted using one-synergy VAF, DMCI, and number of synergies. RESULTS Difference between older and younger group was observed for one-synergy VAF, DMCI for forward stepping up task (one-synergy VAF difference of 2.45 (0.22, 4.68) and DMCI of 9.21 (0.81, 17.61), p = 0.033), but not for lateral stepping up or walking. CONCLUSION The use of VAF based metrics and specifically DMCI, rather than number of MS, in combination with stepping forward exercise can provide a low-cost and easy to implement approach for assessing neuromuscular control in clinical settings.
Collapse
Affiliation(s)
- Laura Burke
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, T12R5CP Cork, Ireland
| | - Liudmila Khokhlova
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, T12R5CP Cork, Ireland
| | - Brendan O'Flynn
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, T12R5CP Cork, Ireland
| | - Salvatore Tedesco
- Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, T12R5CP Cork, Ireland.
| |
Collapse
|
5
|
Dussault-Picard C, Havashinezhadian S, Turpin NA, Moissenet F, Turcot K, Cherni Y. Age-related modifications of muscle synergies during daily-living tasks: A scoping review. Clin Biomech (Bristol, Avon) 2024; 113:106207. [PMID: 38367481 DOI: 10.1016/j.clinbiomech.2024.106207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Aging is associated with changes in neuromuscular control that can lead to difficulties in performing daily living tasks. Muscle synergy analysis allows the assessment of neuromuscular control strategies and functional deficits. However, the age-related changes of muscle synergies during functional tasks are scattered throughout the literature. This review aimed to synthesize the existing literature on muscle synergies in elderly people during daily-living tasks and examine how they differ from those exhibited by young adults. METHODS The Medline, CINAHL and Web of Science databases were searched. Studies were included if they focused on muscle synergies in elderly people during walking, sit-to-stand or stair ascent, and if muscle synergies were obtained by a matrix factorization algorithm. FINDINGS Seventeen studies were included after the screening process. The muscle synergies of 295 elderly people and 182 young adults were reported, including 5 to 16 muscles per leg, or leg and trunk. Results suggest that: 1) elderly people and young adults retain similar muscle synergies' number, 2) elderly people have higher muscles weighting during walking, and 3) an increased inter and intra-subject temporal activation variability during specific tasks (i.e., walking and stair ascent, respectively) was reported in elderly people compared to young adults. INTERPRETATION This review gives a comprehensive understanding of age-related changes in neuromuscular control during daily living tasks. Our findings suggested that although the number of synergies remains similar, metrics such as spatial and temporal structures of synergies are more suitable to identify neuromuscular control deficits between young adults and elderly people.
Collapse
Affiliation(s)
- Cloé Dussault-Picard
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, QC, Canada; Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de recherche du CHU Ste Justine, Montréal, QC, Canada
| | - Sara Havashinezhadian
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE, Département des sciences du sport (STAPS), Université de la Réunion, France
| | - Florent Moissenet
- Laboratoire de kinésiologie, Hôpitaux universitaires de Genève et Université de Genève, Genève, Switzerland; Laboratoire de biomécanique, Hôpitaux universitaires de Genève et Université de Genève, Genève, Switzerland
| | - Katia Turcot
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Yosra Cherni
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, QC, Canada; Laboratoire de Neurobiomécanique & Neuroréadaptation de la Locomotion (NNL), Centre de recherche du CHU Ste Justine, Montréal, QC, Canada; Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Chen Y, Yang C, Côté JN. Few sex-specific effects of fatigue on muscle synergies in a repetitive pointing task. J Biomech 2024; 163:111905. [PMID: 38183760 DOI: 10.1016/j.jbiomech.2023.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Previous studies have identified some sex differences in how individual muscles change their activation during repetitive multi-joint arm motion-induced fatigue. However, little is known about how indicators of multi-muscle coordination change with fatigue in males and females. Fifty-six (29 females) asymptomatic young adults performed a repetitive, forward-backward pointing task until scoring 8/10 on a Borg CR10 scale while surface electromyographic activity of upper trapezius, anterior deltoid, biceps brachii, and triceps brachii was recorded. Activation coefficient, synergy structure, and relative weight of each muscle within synergies were calculated using the non-negative matrix factorization method. Two muscle synergies were extracted from the fatiguing task. The synergy structures were mostly preserved after fatigue, while the activation coefficients were altered. A significant Sex × Fatigue interaction effect showed more use of the anterior deltoid in males especially before fatigue in synergy 1 during shoulder stabilization (p = 0.04). As for synergy 2, it was characterized by variations in the relative weight of biceps, which was higher by 16 % in females compared to males (p = 0.04), and increased with fatigue (p = 0.03) during the elbow flexion acceleration phase and the deceleration phase of the backward pointing movement. Findings suggest that both sexes adapted to fatigue similarly, using fixed synergy structures, with alterations in synergy activation patterns and relative weights of individual muscles. Results support previous findings of an important role for the biceps and anterior deltoid in explaining sex differences in patterns of repetitive motion-induced upper limb fatigue.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada.
| | - Chen Yang
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada; Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL 60611, United States
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada
| |
Collapse
|
7
|
de Rond V, Hulzinga F, Baggen RJ, de Vries A, de Xivry JJO, Pantall A, Nieuwboer A. Lower back muscle activity during weight-shifting is affected by ageing and dual-tasking. Exp Gerontol 2023; 181:112271. [PMID: 37597710 DOI: 10.1016/j.exger.2023.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/19/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE Postural control deteriorates with age, especially under dual-task conditions. It is currently unknown how a challenging virtual reality weight-shifting task affects lower back muscle activity. Hence, this study investigated erector spinae neuromuscular control during mediolateral weight-shifting as part of an exergame during single- (ST) and dual-task (DT) conditions in young and older adults. METHODS Seventeen young and 17 older adults performed mediolateral weight-shifts while hitting virtual wasps in a virtual environment with and without a serial subtraction task (DT). Center of mass position was recorded in real-time using 3D motion capturing. Electromyography recorded bilateral activation of the lumbar longissimus and iliocostalis muscles. RESULTS Weight-shifting (p < 0.03) and targeting the wasps (p < 0.005) deteriorated with age and DT. Relative muscle activation during both quiet stance and weight-shifting increased with age, while the DT-effect did not differ consistently between age-groups. However, bilateral muscle co-contraction decreased with DT in young adults only. When switching direction and targeting the wasps, variability of muscle activation increased with age and DT and proved related to worse targeting performance. These effects were mainly visible at the non-dominant body side. CONCLUSION Older adults showed a higher erector spinae muscle contribution to perform weight-shifts with increased variability at the end of a shift, whereby muscle activity was modulated less well in older than in young adults in response to DT. Hence, the current findings point to the potential for developing postural training in which older adults learn to fine-tune trunk muscle activity to improve weight-shifting and reduce fall risk.
Collapse
Affiliation(s)
- Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Aijse de Vries
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, the Netherlands
| | - Jean-Jacques Orban de Xivry
- Motor Control & Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Annette Pantall
- Clinical Ageing Research Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
8
|
Mohammadyari Gharehbolagh S, Dussault-Picard C, Arvisais D, Dixon PC. Muscle co-contraction and co-activation in cerebral palsy during gait: A scoping review. Gait Posture 2023; 105:6-16. [PMID: 37453339 DOI: 10.1016/j.gaitpost.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Cerebral palsy (CP) results from an injury to a developing brain. Muscle activation patterns during walking are disrupted in individuals with CP. Indeed, excessive muscle co-contraction or co-activation (MCo/MCa) is one of the characteristics of pathological gait. Although some researchers have studied MCo/MCa in individuals with CP during gait, inconsistent results limit our understanding of this literature. Increased knowledge of MCo/MCa patterns in individuals with CP may help the development of improved gait management approaches. RESEARCH QUESTION This review aims to summarize MCo/MCa patterns while walking in individuals with CP across the existing literature and compare them with their healthy peers. METHODS This study follows the Joanna Briggs Institute (JBI) guidelines and the recommendations presented in PRISMA Extension for Scoping Reviews (PRISMA-ScR). The recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for scoping Reviews statement were respected. The following databases were searched: MEDLINE (Ovid), EMBASE (Ovid), CINAHL Plus with Full Text (Ebsco), SPORTDiscus with Full Text (Ebsco), and Web of Science. RESULTS Among 2545 identified studies, 21 studies remained after screening. In total, 337 participants with CP and 249 healthy participants were included. Both MCo and MCa terminologies are used for describing simultaneous muscle activation; however, when it is measured by electromyography (EMG), MCa terminology should be preferred to facilitate interpretation. A wide range of MCo/MCa patterns has been found across studies using different methodologies (e.g., gait protocol, computation methods). Finally, most of the included studies confirm that MCo/MCa is increased in individuals with CP during walking compared to controls. SIGNIFICANCE This review identified missing concepts and common limitations in the literature which could be addressed in future research such as the association between MCo/MCa and gait deviations, and the most appropriate MCo/MCa computation method.
Collapse
Affiliation(s)
- S Mohammadyari Gharehbolagh
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Canada; Research Center of the Sainte-Justine University Hospital (CRCHUSJ), Canada.
| | - C Dussault-Picard
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Canada; Research Center of the Sainte-Justine University Hospital (CRCHUSJ), Canada
| | - D Arvisais
- Health Sciences Libraries, University of Montreal, Canada
| | - P C Dixon
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Canada; Research Center of the Sainte-Justine University Hospital (CRCHUSJ), Canada
| |
Collapse
|
9
|
da Silva Costa AA, Hortobágyi T, den Otter R, Sawers A, Moraes R. Age, Cognitive Task, and Arm Position Differently Affect Muscle Synergy Recruitment but have Similar Effects on Walking Balance. Neuroscience 2023; 527:11-21. [PMID: 37437799 DOI: 10.1016/j.neuroscience.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Age modifies walking balance and neuromuscular control. Cognitive and postural constraints can increase walking balance difficulty and magnify age-related differences. However, how such challenges affect neuromuscular control remains unknown. We determined the effects of age, cognitive task, and arm position on neuromuscular control of walking balance. Young (YA) and older adults (OA) walked on a 6-cm wide beam with and without arm crossing and a cognitive task. Walking balance was quantified by the distance walked on the beam. We also computed step speed, margin of stability, and cognitive errors. Neuromuscular control was determined through muscle synergies extracted from 13 right leg and trunk muscles. We analyzed neuromuscular complexity by the number of synergies and the variance accounted for by the first synergy, coactivity by the number of significantly active muscles in each synergy, and efficiency by the sum of the activation of each significantly active muscle in each synergy. OA vs. YA walked a 14% shorter distance, made 12 times more cognitive errors, and showed less complex and efficient neuromuscular control. Cognitive task reduced walking balance mainly in OA. Decreases in step speed and margin of stability, along with increased muscle synergy coactivity and reduced efficiency were observed in both age groups. Arm-crossing also reduced walking balance mostly in OA, but step speed decreased mainly in YA, in whom the margin of stability increased. Arm-crossing reduced the complexity of synergies. Age, cognitive task, and arm position affect differently muscle synergy recruitment but have similar effects on walking balance.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil; Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands.
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands; Department of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary; Department of Neurology, Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Institute of Sport Research, Sports University of Tirana, Tirana, Albania
| | - Rob den Otter
- Department of Human Movement Sciences, University of Groningen Medical Center, Groningen, The Netherlands
| | - Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
10
|
Gilliam JR, Song A, Sahu PK, Silfies SP. Test-retest reliability and construct validity of trunk extensor muscle force modulation accuracy. PLoS One 2023; 18:e0289531. [PMID: 37590280 PMCID: PMC10434934 DOI: 10.1371/journal.pone.0289531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Low back pain is associated with changes in trunk muscle structure and function and motor control impairments. Voluntary force modulation (FM) of trunk muscles is a unique and under-investigated motor control characteristic. One of the reasons for this paucity of evidence is the lack of exploration and publication on the reliability and validity of trunk FM protocols. The purpose of this study was to determine the within- and between-day test-retest reliability and construct validity for trunk extensor muscle FM. Twenty-nine healthy participants were tested under three FM conditions with different modulation rates. Testing was performed on a custom-built apparatus designed for trunk isometric force testing. FM accuracy relative to a fluctuating target force (20-50%MVF) was quantified using the root mean square error of the participant's generated force relative to the target force. Reliability and precision of measurement were assessed using the Intraclass Correlation Coefficient (ICC), standard error of measurement (SEM), minimal detectable difference (MDD95), and Bland-Altman plots. In a subset of participants, we collected surface electromyography of trunk and hip muscles. We used non-negative matrix factorization (NNMF) to identify the underlying motor control strategies. Within- and between-day test-retest reliability was excellent for FM accuracy across the three conditions (ICC range: 0.865 to 0.979). SEM values ranged 0.9-1.8 Newtons(N) and MDD95 ranged from 2.4-4.9N. Conditions with faster rates of FM had higher ICCs. NNMF analysis revealed two muscle synergies that were consistent across participants and conditions. These synergies demonstrate that the muscles primarily involved in this FM task were indeed the trunk extensor muscles. This protocol can consistently measure FM accuracy within and between testing sessions. Trunk extensor FM, as measured by this protocol, is not specific to any trunk muscle group but is the result of modulation by all the trunk extensor muscles.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - Ahyoung Song
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
11
|
Nascimento MDM, Maduro PA, Rios PMB, Nascimento LDS, Silva CN, Kliegel M, Ihle A. The Effects of 12-Week Dual-Task Physical-Cognitive Training on Gait, Balance, Lower Extremity Muscle Strength, and Cognition in Older Adult Women: A Randomized Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085498. [PMID: 37107780 PMCID: PMC10139030 DOI: 10.3390/ijerph20085498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
This study aims to investigate the effects of dual-task physical-cognitive the training on body balance (BB), gait performance (GP), lower limb muscle strength (LEMS), and cognitive performance (CP) in a group of cognitively normal older adult women (n = 44; 66.20 ± 4.05 years). Of these, 22 were randomly allocated to the dual-task training (DT) group, and 22 participated in the control group (CG). Assessments were performed at baseline, after 12 weeks of intervention, and at the end of 12 weeks of follow-up, using the following instruments: Timed Up & Go (TUG), Timed Up & Go manual (TUGm), Timed Up & Go cognitive (TUGc), Balance Test (TEC), sit-to-stand test (STS), and verbal fluency test (VF). After 12 weeks of DT training, participants showed a significant time × group interaction in all motor assessments (BB, GP, LEMS), as well as in three cognitive tests (VF-grouping, VF-exchange, VF-total). No time-group interaction effect was indicated for the VF-category test. At all evaluation times, CG members maintained constant physical and cognitive performance. We conclude that 12 weeks of physical-cognitive DT training was effective in promoting BB, GP, and LEMS, as well as CP in cognitively normal older adult women, with lasting effects up to 12 weeks after the intervention.
Collapse
Affiliation(s)
- Marcelo de Maio Nascimento
- Department of Physical Education, Federal University of Vale do São Francisco, Campus Petrolina 56304-917, Brazil
- Correspondence: ; Tel.: +55-(87)-21016856
| | - Paula Andreatta Maduro
- University Hospital of the Federal University of Vale do São Francisco, Campus Petrolina 56304-917, Brazil
| | - Pâmala Morais Bagano Rios
- Department of Psychology, Federal University of Vale do São Francisco, Campus Petrolina 56304-917, Brazil
| | - Lara dos Santos Nascimento
- Department of Physical Education, Federal University of Vale do São Francisco, Campus Petrolina 56304-917, Brazil
| | - Carolina Nascimento Silva
- Department of Psychology, Federal University of Vale do São Francisco, Campus Petrolina 56304-917, Brazil
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland (A.I.)
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability: Life Course Perspectives, 1015 Lausanne, Switzerland
| | - Andreas Ihle
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland (A.I.)
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability: Life Course Perspectives, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Guo X, He B, Lau KYS, Chan PPK, Liu R, Xie JJ, Ha SCW, Chen CY, Cheing GLY, Cheung RTH, Chan RHM, Cheung VCK. Age-Related Modifications of Muscle Synergies and Their Temporal Activations for Overground Walking. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2700-2709. [PMID: 36107887 DOI: 10.1109/tnsre.2022.3206887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Healthy ageing modifies neuromuscular control of human overground walking. Previous studies found that ageing changes gait biomechanics, but whether there is concurrent ageing-related modulation of neuromuscular control remains unclear. We analyzed gait kinematics and electromyographic signals (EMGs; 14 lower-limb and trunk muscles) collected at three speeds during overground walking in 11 healthy young adults (mean age of 23.4 years) and 11 healthy elderlies (67.2 years). Neuromuscular control was characterized by extracting muscle synergies from EMGs and the synergies of both groups were k -means-clustered. The synergies of the two groups were grossly similar, but we observed numerous cluster- and muscle-specific differences between the age groups. At the population level, some hip-motion-related synergy clusters were more frequently identified in elderlies while others, more frequent in young adults. Such differences in synergy prevalence between the age groups are consistent with the finding that elderlies had a larger hip flexion range. For the synergies shared between both groups, the elderlies had higher inter-subject variability of the temporal activations than young adults. To further explore what synergy characteristics may be related to this inter-subject variability, we found that the inter-subject variance of temporal activations correlated negatively with the sparseness of the synergies in elderlies but not young adults during slow walking. Overall, our results suggest that as humans age, not only are the muscle synergies for walking fine-tuned in structure, but their temporal activation patterns are also more heterogeneous across individuals, possibly reflecting individual differences in prior sensorimotor experience or ageing-related changes in limb neuro-musculoskeletal properties.
Collapse
|
13
|
Alizadehsaravi L, Bruijn SM, Muijres W, Koster RAJ, van Dieën JH. Improvement in gait stability in older adults after ten sessions of standing balance training. PLoS One 2022; 17:e0242115. [PMID: 35895709 PMCID: PMC9328559 DOI: 10.1371/journal.pone.0242115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Balance training aims to improve balance and transfer acquired skills to real-life tasks. How older adults adapt gait to different conditions, and whether these adaptations are altered by balance training, remains unclear. We hypothesized that reorganization of modular control of muscle activity is a mechanism underlying adaptation of gait to training and environmental constraints. We investigated the transfer of standing balance training, shown to enhance unipedal balance control, to gait and adaptations in neuromuscular control of gait between normal and narrow-base walking in twenty-two older adults (72.6 ± 4.2 years). At baseline, after one, and after ten training sessions, kinematics and EMG of normal and narrow-base treadmill walking were measured. Gait parameters and temporal activation profiles of five muscle synergies were compared between time-points and gait conditions. Effects of balance training and an interaction between training and gait condition on step width were found, but not on synergies. After ten training sessions step width decreased in narrow-base walking, while step width variability decreased in both conditions. Trunk center of mass displacement and velocity, and the local divergence exponent, were lower in narrow-base compared to normal walking. Activation duration in narrow-base compared to normal walking was shorter for synergies associated with dominant leg weight acceptance and non-dominant leg stance, and longer for the synergy associated with non-dominant heel-strike. Time of peak activation associated with dominant leg stance occurred earlier in narrow-base compared to normal walking, while it was delayed in synergies associated with heel-strikes and non-dominant leg stance. The adaptations of synergies to narrow-base walking may be interpreted as related to more cautious weight transfer to the new stance leg and enhanced control over center of mass movement in the stance phase. The improvement of gait stability due to standing balance training is promising for less mobile older adults.
Collapse
Affiliation(s)
- Leila Alizadehsaravi
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd M. Bruijn
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Muijres
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ruud A. J. Koster
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaap H. van Dieën
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
dos Santos LO, Batistela RA, Moraes R. Gait control to step into a lowered surface with one limb with different demands for accuracy in younger and older adults. Exp Gerontol 2022; 161:111716. [DOI: 10.1016/j.exger.2022.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/11/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
|
15
|
Collimore AN, Aiello AJ, Pohlig RT, Awad LN. The Dynamic Motor Control Index as a Marker of Age-Related Neuromuscular Impairment. Front Aging Neurosci 2021; 13:678525. [PMID: 34366824 PMCID: PMC8339561 DOI: 10.3389/fnagi.2021.678525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Biomarkers that can identify age-related decline in walking function have potential to promote healthier aging by triggering timely interventions that can mitigate or reverse impairments. Recent evidence suggests that changes in neuromuscular control precede changes in walking function; however, it is unclear which measures are best suited for identifying age-related changes. In this study, non-negative matrix factorization of electromyography data collected during treadmill walking was used to calculate two measures of the complexity of muscle co-activations during walking for 36 adults: (1) the number of muscle synergies and (2) the dynamic motor control index. Study participants were grouped into young (18–35 years old), young-old (65–74 years old), and old–old (75+ years old) subsets. We found that the dynamic motor control index [χ2(2) = 9.41, p = 0.009], and not the number of muscle synergies [χ2(2) = 5.42, p = 0.067], differentiates between age groups [χ2(4) = 10.62, p = 0.031, Nagelkerke R2 = 0.297]. Moreover, an impairment threshold set at a dynamic motor control index of 90 (i.e., one standard deviation below the young adults) was able to differentiate between age groups [χ2(2) = 9.351, p = 0.009]. The dynamic motor control index identifies age-related differences in neuromuscular complexity not measured by the number of muscle synergies and may have clinical utility as a marker of neuromotor impairment.
Collapse
Affiliation(s)
- Ashley N Collimore
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Ashlyn J Aiello
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE, United States
| | - Louis N Awad
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| |
Collapse
|
16
|
da Silva Costa AA, Moraes R, Hortobágyi T, Sawers A. Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance. Exp Gerontol 2020; 140:111050. [PMID: 32750424 DOI: 10.1016/j.exger.2020.111050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Healthy aging modifies neuromuscular control of dynamic balance. Challenging tasks could amplify such modifications, providing clinical insights. We examined the effects of age and walking condition difficulty on neuromuscular control of walking balance. We analyzed whole-body kinematics and activity of 13 right leg and trunk muscles in 17 young (11 males and 6 females; age 24 ± 3 years) and 14 older adults (3 males and 11 females; age 69 ± 4 years) while walking on a taped line on the floor and a 6-cm wide beam. Spatiotemporal parameters of gait, margin of stability, motor performance, and muscle synergies were estimated. Regardless of age, maintaining walking balance was more difficult on the beam compared to the taped line as evidenced by a shorter distance walked (17.3%), a reduction in step length (5.8%) and speed (10.3%), as well as a 40.0% smaller margin of stability during beam vs. tape walking. The number of muscle synergies was also higher during beam vs. tape walking. Compared to younger adults, older adults had larger margin of stability during beam walking. Older adults also had higher muscle co-activity within each muscle synergy and greater variance accounted for by the first muscle synergy regardless of condition. Such age-effects may be interpreted as a safer, less efficient, and less complex neuromuscular modular control strategy. In conclusion, beam walking increased the difficulty of maintaining walking balance and induced adaptations in modular control. It seems that healthy older adults reduce the complexity and efficiency of neuromuscular control of walking to preserve walking balance.
Collapse
Affiliation(s)
- Andréia Abud da Silva Costa
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Renato Moraes
- Ribeirão Preto Medical School, Graduate Program in Rehabilitation and Functional Performance, University of São Paulo, Brazil; Biomechanics and Motor Control Lab, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Brazil
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Andrew Sawers
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
17
|
Intra-limb and muscular coordination during walking on slopes. Eur J Appl Physiol 2020; 120:1841-1854. [DOI: 10.1007/s00421-020-04415-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
|