1
|
Power Quality Disturbance Recognition Using Empirical Wavelet Transform and Feature Selection. ELECTRONICS 2022. [DOI: 10.3390/electronics11020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With the growth of nonlinear electrical equipment, power quality disturbances (PQDs) often appear in electrical systems. To solve this, a practical heuristic methodology for PQD detection and classification based on empirical wavelet transform has been proposed. By using a multiresolution analysis tool, empirical wavelet transform, the voltage waveform signal is decomposed into several sub-signals, and some potential features are extracted in the statistical method. To reduce the feature vector dimensions, the ReliefF algorithm is used for feature selection and optimized for dimensionality reduction, which reduces the complexity of system calculation while ensuring accuracy. Finally, a classifier based on support vector machines (SVM) was built, and with the ranked feature vectors’ input, the PQD can be recognized. The experimental results verify that the classification results achieved high accuracy, which confirms the properties and robustness of the proposed approach in noisy environments.
Collapse
|