1
|
Silva V, Oliveira I, Pereira JA, Gonçalves B. Almond By-Products: A Comprehensive Review of Composition, Bioactivities, and Influencing Factors. Foods 2025; 14:1042. [PMID: 40232093 PMCID: PMC11941897 DOI: 10.3390/foods14061042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
One of today's major environmental and economic challenges is the fight against both agro- and industrial-waste. Almond production and industrial processing exemplifies this issue, as it generates tons of waste and by-products, with hulls and shells accounting for about 70% of the total fruit's weight while skins represent about 6% of the shelled kernel. Since the edible kernel, about 23% of the total fruit weight, holds the highest commercial value, there has been growing interest within the scientific community in exploring the potential of these by-products. However, almond by-products contain a wide range of phytochemicals, mainly phenolic compounds (flavonoids and non-flavonoids), and triterpenoids, with great potential as antioxidant, antimicrobial, anti-inflammatory, and prebiotic properties. Although these by-products are being explored as alternative sources in the textile, pharmaceutical/cosmetic, and food industries, their primary use remains in livestock feed or bedding, or as biofuel. This review compiles recent scientific data on almond by-products' phytochemical composition and bioactivities aiming to support sustainable and holistic agricultural practices.
Collapse
Affiliation(s)
- Vânia Silva
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| | - Ivo Oliveira
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha, CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Berta Gonçalves
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| |
Collapse
|
2
|
Faraloni C, Albanese L, Chini Zittelli G, Meneguzzo F, Tagliavento L, Zabini F. New Route to the Production of Almond Beverages Using Hydrodynamic Cavitation. Foods 2023; 12:935. [PMID: 36900452 PMCID: PMC10001306 DOI: 10.3390/foods12050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Perceived as a healthy food, almond beverages are gaining ever-increasing consumer preference across nonalcoholic vegetable beverages, ranking in first place among oilseed-based drinks. However, costly raw material; time and energy consuming pre- and posttreatments such as soaking, blanching and peeling; and thermal sterilization hinder their sustainability, affordability and spread. Hydrodynamic cavitation processes were applied, for the first time, as a single-unit operation with straightforward scalability, to the extraction in water of almond skinless kernels in the form of flour and fine grains, and of whole almond seeds in the form of coarse grains, up to high concentrations. The nutritional profile of the extracts matched that of a high-end commercial product, as well as showing nearly complete extraction of the raw materials. The availability of bioactive micronutrients and the microbiological stability exceeded the commercial product. The concentrated extract of whole almond seeds showed comparatively higher antiradical activity, likely due to the properties of the almond kernel skin. Hydrodynamic cavitation-based processing might represent a convenient route to the production of conventional as well as integral and potentially healthier almond beverages, avoiding multiple technological steps, while affording fast production cycles and consuming less than 50 Wh of electricity per liter before bottling.
Collapse
Affiliation(s)
- Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Albanese
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Federica Zabini
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Supharoek SA, Weerasuk B, Siriangkhawut W, Grudpan K, Ponhong K. Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit. Molecules 2022; 27:5697. [PMID: 36080464 PMCID: PMC9457780 DOI: 10.3390/molecules27175697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
An ultrasound-assisted, one-pot cloud point extraction was developed for the determination of iron in vegetable samples by UV-Visible spectrophotometry. This method was based on the complexation of iron with an environmentally-friendly natural chelating agent extracted from Dipterocarpus intricatus Dyer fruit at pH 5.5 in the presence of Triton X-114. Reagent extraction, complexation, and preconcentration were performed simultaneously using ultrasound-assisted extraction at 45 °C. The surfactant-rich phase was diluted with ethanol and loaded through a syringe barrel packed with cotton that acted as a filter to trap the reagent powder. Analyte-entrapped on cotton was eluted using 0.1 mol·L-1 nitric acid solution. Filtrate and eluate solutions were measured absorbance of the dark-blue product at 575 nm. Influential parameters for the procedure were investigated. Under the optimum experimental conditions, the calibration curve was linear, ranging from 0.1 to 1.0 mg·L-1 with r2 = 0.997. Limits of detection and quantification were 0.03 and 0.09 mg·L-1, respectively while precision values of intra-day and inter-day were less than 5%. Recovery at 0.5 mg·L-1 ranged from 89.0 to 99.8%, while iron content in vegetable samples ranged from 2.45 to 13.36 mg/100 g. This method was cost-effective, reliable, eco-friendly, and convenient as a green analytical approach to determining iron content.
Collapse
Affiliation(s)
- Sam-ang Supharoek
- Department of Medical Science, Amnatcharoen Campus, Mahidol University, Amnat Charoen 37000, Thailand
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Bordin Weerasuk
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Watsaka Siriangkhawut
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Kate Grudpan
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kraingkrai Ponhong
- Creative Chemistry and Innovation Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
- Multidisciplinary Research Unit of Pure and Applied Chemistry (MRUPAC), Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
4
|
Zhao Z, Liu Y, Zhang Y, Geng Z, Su R, Zhou L, Han C, Wang Z, Ma S, Li W. Evaluation of the chemical profile from four germplasms sources of Pruni Semen using UHPLC-LTQ-Orbitrap-MS and multivariate analysis. J Pharm Anal 2022; 12:733-742. [PMID: 36320598 PMCID: PMC9615524 DOI: 10.1016/j.jpha.2022.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Pruni Semen, the seed of several unique Prunus plants, is a traditional purgative herbal material. To determine the authentic sources of Pruni Semen, 46 samples from four species were collected and analyzed. Ten compounds including multiflorin A (Mul A), a notable purative compound, were isolated and identified by chemical separation and nuclear magnetic resonance spectroscopy. Seventy-six communal components were identified by ultra-high performance liquid chromatography with linear ion trap-quadrupole Orbitrap mass spectrometry, and acetyl flavonoid glycosides were recognized as characteristic constituents. The flavonoids were distributed in the seed coat and cyanogenic glycosides in the kernel. Based on this, methods for identifying Pruni Semen from different sources were established using chemical fingerprinting, quantitative analysis of the eight principal compounds, hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. The results showed that the samples were divided into two categories: one is the small seeds from Prunus humilis (Ph) and Prunus japonica (Pj), and the other is the big seeds from Prunus pedunculata (Pp) and Prunus triloba (Pt). The average content of Mul A was 3.02, 6.93, 0.40, and 0.29 mg/g, while the average content of amygdalin was 18.5, 17.7, 31.5, and 30.9 mg/g in Ph, Pj, Pp, and Pt, respectively. All the above information suggests that small seeds might be superior sources of Pruni Semen. This is the first comprehensive report on the identification of chemical components in Pruni Semen from different species. Chemical constituents of Pruni semen from four Prunus species were compared. Acetyl flavonoid glycosides were identified as the characteristic components. Flavonoids were present in the seed coat and cyanogenic glycosides in the kernel. The content of acetyl flavonoid in small seeds is significant higher than those in big ones.
Collapse
|
5
|
Adsorption of Polyphenols from Almond Blanching Water by Macroporous Resin. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:7847276. [PMID: 35847429 PMCID: PMC9277471 DOI: 10.1155/2022/7847276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022]
Abstract
The almond processing industry generates large volumes of effluent after the blanching process. Blanching water is one of the main by-products with a potential source of polyphenols. However, before being used or discharged, this by-product requires pretreatment. This work was aimed at paving the way toward using adsorption on XAD-7 HP macroporous resin for wastewater treatment. This promising technique could be easily scaled up and integrated into existing production lines. Adsorption was carried out with a fixed bed in counterflow, while desorption was performed by acetone in downflow. With this approach, it was possible to concentrate up to five times the phenolic content of the initial blanching water. The resulting extract was analyzed by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), identifying more than 89% procyanidins, in addition to catechin, epicatechin, and isorhamnetin-3-O-rutinoside. Applications such as spray-drying and prilling techniques were suggested to improve the efficiency of polyphenols by preserving their stability, bioactivity, and bioavailability.
Collapse
|
6
|
Urango ACM, Strieder MM, Silva EK, Meireles MAA. Impact of Thermosonication Processing on Food Quality and Safety: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14041985] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agro-based final discharge is one of the major contributors to wastewater in the world. It creates high demand for efficient treatment. The electrocoagulation process can be used for agro-based wastewater treatment. The performance of the electrocoagulation process is based on several parameters, including the electrode materials, electrolysis time, current density, and electrolyte support. Agro-based industrial wastewater (AIW) treatment processes depend on the characteristics of the wastewater. The removal of organic content from various sources of AIW can reach up to more than 80%. Some studies show that the performance of the electrochemical process can be increased using a combination with other methods. Those other methods include biological and physical treatment. The results of previous research show that organic content and color can be degraded completely. The relationship between the energy consumption and operating cost was analyzed in order to show the efficiency of electrocoagulation treatment.
Collapse
|
8
|
Garcia-Perez P, Xiao J, Munekata PES, Lorenzo JM, Barba FJ, Rajoka MSR, Barros L, Mascoloti Sprea R, Amaral JS, Prieto MA, Simal-Gandara J. Revalorization of Almond By-Products for the Design of Novel Functional Foods: An Updated Review. Foods 2021; 10:1823. [PMID: 34441599 PMCID: PMC8391475 DOI: 10.3390/foods10081823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
The search for waste minimization and the valorization of by-products are key to good management and improved sustainability in the food industry. The great production of almonds, based on their high nutritional value as food, especially almond kernels, generates tons of waste yearly. The remaining parts (skin, shell, hulls, etc.) are still little explored, even though they have been used as fuel by burning or as livestock feed. The interest in these by-products has been increasing, as they possess beneficial properties, caused by the presence of different bioactive compounds, and can be used as promising sources of new ingredients for the food, cosmetic and pharmaceutical industry. Additionally, the use of almond by-products is being increasingly applied for the fortification of already-existing food products, but there are some limitations, including the presence of allergens and mycotoxins that harden their applicability. This review focuses on the extraction technologies applied to the valorization of almond by-products for the development of new value-added products that would contribute to the reduction of environmental impact and an improvement in the sustainability and competitiveness of the almond industry.
Collapse
Affiliation(s)
- Pascual Garcia-Perez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (P.G.-P.); (J.X.)
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (P.G.-P.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (J.M.L.)
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal; (L.B.); (R.M.S.); (J.S.A.)
| | - Rafael Mascoloti Sprea
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal; (L.B.); (R.M.S.); (J.S.A.)
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal; (L.B.); (R.M.S.); (J.S.A.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (P.G.-P.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (P.G.-P.); (J.X.)
| |
Collapse
|
9
|
Khandelwal N, Darbha GK. Combined antioxidant capped and surface supported redox-sensitive nanoparticles for continuous elimination of multi-metallic species. Chem Commun (Camb) 2021; 57:7280-7283. [PMID: 34212165 DOI: 10.1039/d1cc02972j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategic modification involving (i) a multi-functional almond shell biochar surface support and (ii) capping with almond skin extracted antioxidants was performed to preserve redox-sensitive Fe0 nanoparticles (NPs). pXRD data showed generation of an iron-carbonyl shell on the supported Fe0 NPs (SA-Fe0), justifying successful antioxidant capping. The total metal removal capacity of 695 mg g-1i.e. AsO2- (300.2 mg g-1) > Cd2+ (224.2 mg g-1) > CrO42- (125.2 mg g-1) > Ni2+ (44.5 mg g-1) in batch mode, and 102 mg g-1 in continuous column setup confirms the excellent reactivity of the SA-Fe0 nanocomposite. Loss of the iron-carbonyl shell and iron oxidation during interaction with contaminants confirm no hindrance in electron transfer due to antioxidant capping.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | | |
Collapse
|
10
|
Modification of Olive Leaves’ Surface by Ultrasound Cavitation. Correlation with Polyphenol Extraction Enhancement. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the impact of ultrasound at 20 kHz on olive leaves to understand how acoustic cavitation could increase polyphenol extraction. Application of ultrasound to whole leaf from 5 to 60 min enabled us to increase extraction from 6.96 to 48.75 µg eq. oleuropein/mL of extract. These results were correlated with Environmental Scanning Electron Microscopy, allowing for leaf surface observation and optical microscopy of treated leaf cross sections to understand histochemical modifications. Our observations suggest that the effectiveness of ultrasound applied to extraction is highly dependent on plant structure and on how this material will react when subjected to acoustic cavitation. Ultrasound seems to impact the leaves by two mechanisms: cuticle erosion, and fragmentation of olive leaf surface protrusions (hairs), which are both polyphenol-rich structures.
Collapse
|