1
|
Anichini G, Leiloglou M, Hu Z, O'Neill K, Daniel Elson. Hyperspectral and multispectral imaging in neurosurgery: a systematic literature review and meta-analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108293. [PMID: 38658267 DOI: 10.1016/j.ejso.2024.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION The neuro-surgical community is witnessing a rising interest for surgical application of multispectral/hyperspectral imaging. Several potential technical applications of this optical imaging are reported, but the set-up is variable and so are the processing methods. We present a systematic review of the relevant literature on the topic. MATERIALS AND METHODS A literature search based on the PRISMA principles was performed on PubMed, SCOPUS, and Web of Science, using MESH terms and Boolean operators. Papers regarding intra-operative in-vivo application of multispectral and/or hyperspectral imaging in humans during neurosurgical procedures were included. Papers reporting technologies related to radiological applications were excluded. A meta-analysis on the performance metrics was also conducted. RESULTS Our search string retrieved 20 papers. The main applications of optical imaging during neurosurgery concern tumour detection and improvement of the extent of resection (15 papers) or visualization of perfusion changes during neuro-oncology or neuro-vascular surgery (5 papers). All the retrieved articles were pilot studies, proof of concepts, or case reports, with limited number of patients recruited. Sensitivity, specificity, and accuracy were promising in most of the reports, but the metanalysis showed heterogeneous approaches and results among studies. CONCLUSIONS The present review shows that several approaches are currently being tested to integrate hyperspectral imaging in neurosurgery, but most of the studies reported a limited pool of patients, with different approaches to data collection and analysis. Further studies on larger cohorts of patients are therefore desirable to fully explore the potential of this imaging technique.
Collapse
Affiliation(s)
- Giulio Anichini
- Department of Brain Sciences, Imperial College of London, United Kingdom; Department of Neurosurgery, Neuroscience, Imperial College Healthcare NHS Trust, United Kingdom.
| | - Maria Leiloglou
- Department of Surgery and Cancer, Imperial College of London, United Kingdom; The Hamlyn Centre, Imperial College of London, United Kingdom
| | - Zepeng Hu
- Department of Surgery and Cancer, Imperial College of London, United Kingdom; The Hamlyn Centre, Imperial College of London, United Kingdom
| | - Kevin O'Neill
- Department of Brain Sciences, Imperial College of London, United Kingdom; Department of Neurosurgery, Neuroscience, Imperial College Healthcare NHS Trust, United Kingdom
| | - Daniel Elson
- Department of Surgery and Cancer, Imperial College of London, United Kingdom; The Hamlyn Centre, Imperial College of London, United Kingdom
| |
Collapse
|
2
|
Cruz‐Guerrero IA, Campos‐Delgado DU, Mejía‐Rodríguez AR, Leon R, Ortega S, Fabelo H, Camacho R, Plaza MDLL, Callico G. Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks. Healthc Technol Lett 2024; 11:240-251. [PMID: 39100499 PMCID: PMC11294933 DOI: 10.1049/htl2.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 08/06/2024] Open
Abstract
Hyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non-contact and non-invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification.
Collapse
Affiliation(s)
- Inés A. Cruz‐Guerrero
- Facultad de CienciasUniversidad Autonoma de San Luis Potosí (UASLP)San Luis PotosiMexico
- Department of Biostatistics and Informatics, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusColoradoUSA
| | | | | | - Raquel Leon
- Institute for Applied Microelectronics (IUMA)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Samuel Ortega
- Institute for Applied Microelectronics (IUMA)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Himar Fabelo
- Institute for Applied Microelectronics (IUMA)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Rafael Camacho
- Department of Pathological AnatomyUniversity Hospital Doctor Negrin of Gran CanariaLas Palmas de Gran CanariaSpain
| | - Maria de la Luz Plaza
- Department of Pathological AnatomyUniversity Hospital Doctor Negrin of Gran CanariaLas Palmas de Gran CanariaSpain
| | - Gustavo Callico
- Institute for Applied Microelectronics (IUMA)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| |
Collapse
|
3
|
Leon R, Fabelo H, Ortega S, Cruz-Guerrero IA, Campos-Delgado DU, Szolna A, Piñeiro JF, Espino C, O'Shanahan AJ, Hernandez M, Carrera D, Bisshopp S, Sosa C, Balea-Fernandez FJ, Morera J, Clavo B, Callico GM. Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection. NPJ Precis Oncol 2023; 7:119. [PMID: 37964078 PMCID: PMC10646050 DOI: 10.1038/s41698-023-00475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.
Collapse
Affiliation(s)
- Raquel Leon
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Himar Fabelo
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain.
| | - Samuel Ortega
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Tromsø, Norway
| | - Ines A Cruz-Guerrero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatric Plastic and Reconstructive Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Daniel Ulises Campos-Delgado
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Adam Szolna
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Piñeiro
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carlos Espino
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Aruma J O'Shanahan
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Hernandez
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Carrera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara Bisshopp
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Coralia Sosa
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco J Balea-Fernandez
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jesus Morera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Bernardino Clavo
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Research Unit, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gustavo M Callico
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Puustinen S, Vrzáková H, Hyttinen J, Rauramaa T, Fält P, Hauta-Kasari M, Bednarik R, Koivisto T, Rantala S, von Und Zu Fraunberg M, Jääskeläinen JE, Elomaa AP. Hyperspectral Imaging in Brain Tumor Surgery-Evidence of Machine Learning-Based Performance. World Neurosurg 2023; 175:e614-e635. [PMID: 37030483 DOI: 10.1016/j.wneu.2023.03.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. METHODS We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. RESULTS The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. CONCLUSIONS In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.
Collapse
Affiliation(s)
- Sami Puustinen
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Eastern Finland Microsurgery Center, Kuopio, Finland.
| | - Hana Vrzáková
- Kuopio University Hospital, Eastern Finland Microsurgery Center, Kuopio, Finland; University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Joni Hyttinen
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Tuomas Rauramaa
- Kuopio University Hospital, Department of Clinical Pathology, Kuopio, Finland
| | - Pauli Fält
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Markku Hauta-Kasari
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Roman Bednarik
- University of Eastern Finland, Faculty of Science and Forestry, School of Computing, Joensuu, Finland
| | - Timo Koivisto
- Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| | - Susanna Rantala
- Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| | - Mikael von Und Zu Fraunberg
- Oulu University Hospital, Department of Neurosurgery, Oulu, Finland; University of Oulu, Faculty of Medicine, Research Unit of Clinical Medicine, Oulu, Finland
| | | | - Antti-Pekka Elomaa
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Eastern Finland Microsurgery Center, Kuopio, Finland; Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| |
Collapse
|
5
|
Martinez-Vega B, Tkachenko M, Matkabi M, Ortega S, Fabelo H, Balea-Fernandez F, La Salvia M, Torti E, Leporati F, Callico GM, Chalopin C. Evaluation of Preprocessing Methods on Independent Medical Hyperspectral Databases to Improve Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:8917. [PMID: 36433516 PMCID: PMC9693077 DOI: 10.3390/s22228917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Currently, one of the most common causes of death worldwide is cancer. The development of innovative methods to support the early and accurate detection of cancers is required to increase the recovery rate of patients. Several studies have shown that medical Hyperspectral Imaging (HSI) combined with artificial intelligence algorithms is a powerful tool for cancer detection. Various preprocessing methods are commonly applied to hyperspectral data to improve the performance of the algorithms. However, there is currently no standard for these methods, and no studies have compared them so far in the medical field. In this work, we evaluated different combinations of preprocessing steps, including spatial and spectral smoothing, Min-Max scaling, Standard Normal Variate normalization, and a median spatial smoothing technique, with the goal of improving tumor detection in three different HSI databases concerning colorectal, esophagogastric, and brain cancers. Two machine learning and deep learning models were used to perform the pixel-wise classification. The results showed that the choice of preprocessing method affects the performance of tumor identification. The method that showed slightly better results with respect to identifing colorectal tumors was Median Filter preprocessing (0.94 of area under the curve). On the other hand, esophagogastric and brain tumors were more accurately identified using Min-Max scaling preprocessing (0.93 and 0.92 of area under the curve, respectively). However, it is observed that the Median Filter method smooths sharp spectral features, resulting in high variability in the classification performance. Therefore, based on these results, obtained with different databases acquired by different HSI instrumentation, the most relevant preprocessing technique identified in this work is Min-Max scaling.
Collapse
Affiliation(s)
- Beatriz Martinez-Vega
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Mariia Tkachenko
- Innovation Center Computer-Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), University of Leipzig, 04105 Leipzig, Germany
| | - Marianne Matkabi
- Innovation Center Computer-Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany
- Department of Electrical Engineering, Mechanical Engineering and Industrial Engineering, Anhalt University of Applied Science Anhalt, 06366 Köthen, Germany
| | - Samuel Ortega
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, NO-9291 Tromsø, Norway
| | - Himar Fabelo
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
- Fundacion Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), 35019 Las Palmas de Gran Canaria, Spain
| | - Francisco Balea-Fernandez
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
- Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Marco La Salvia
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| | - Emanuele Torti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| | - Francesco Leporati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| | - Gustavo M. Callico
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Claire Chalopin
- Innovation Center Computer-Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Wu Y, Xu Z, Yang W, Ning Z, Dong H. Review on the Application of Hyperspectral Imaging Technology of the Exposed Cortex in Cerebral Surgery. Front Bioeng Biotechnol 2022; 10:906728. [PMID: 35711634 PMCID: PMC9196632 DOI: 10.3389/fbioe.2022.906728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The study of brain science is vital to human health. The application of hyperspectral imaging in biomedical fields has grown dramatically in recent years due to their unique optical imaging method and multidimensional information acquisition. Hyperspectral imaging technology can acquire two-dimensional spatial information and one-dimensional spectral information of biological samples simultaneously, covering the ultraviolet, visible and infrared spectral ranges with high spectral resolution, which can provide diagnostic information about the physiological, morphological and biochemical components of tissues and organs. This technology also presents finer spectral features for brain imaging studies, and further provides more auxiliary information for cerebral disease research. This paper reviews the recent advance of hyperspectral imaging in cerebral diagnosis. Firstly, the experimental setup, image acquisition and pre-processing, and analysis methods of hyperspectral technology were introduced. Secondly, the latest research progress and applications of hyperspectral imaging in brain tissue metabolism, hemodynamics, and brain cancer diagnosis in recent years were summarized briefly. Finally, the limitations of the application of hyperspectral imaging in cerebral disease diagnosis field were analyzed, and the future development direction was proposed.
Collapse
Affiliation(s)
- Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Zhiqiang Ning
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Hefei, China.,Science Island Branch, Graduate School of USTC, Hefei, China
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
7
|
Urbanos G, Martín A, Vázquez G, Villanueva M, Villa M, Jimenez-Roldan L, Chavarrías M, Lagares A, Juárez E, Sanz C. Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification. SENSORS 2021; 21:s21113827. [PMID: 34073145 PMCID: PMC8199064 DOI: 10.3390/s21113827] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023]
Abstract
Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.
Collapse
Affiliation(s)
- Gemma Urbanos
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain; (L.J.-R.); (A.L.)
| | - Alberto Martín
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
| | - Guillermo Vázquez
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
| | - Marta Villanueva
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
| | - Manuel Villa
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
| | - Luis Jimenez-Roldan
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain; (L.J.-R.); (A.L.)
| | - Miguel Chavarrías
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
- Correspondence:
| | - Alfonso Lagares
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28041 Madrid, Spain; (L.J.-R.); (A.L.)
| | - Eduardo Juárez
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
| | - César Sanz
- Research Center on Software Technologies and Multimedia Systems (CITSEM), Campus Sur UPM, Universidad Politécnica de Madrid (UPM), 28031 Madrid, Spain; (G.U.); (A.M.); (G.V.); (M.V.); (M.V.); (E.J.); (C.S.)
| |
Collapse
|