1
|
Rothermel F, Toulouse A, Thiele S, Jung C, Drozella J, Steinhoff R, Giessen H, Herkommer AM. Magnetically actuatable 3D-printed endoscopic microsystems. COMMUNICATIONS ENGINEERING 2025; 4:69. [PMID: 40204987 PMCID: PMC11982310 DOI: 10.1038/s44172-025-00403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
In endoscopy, there is a crucial demand for compact system designs to allow for imaging in narrow spaces and reduce the risk of damage during endoscopic procedures. Enhanced functionality of lensed endoscopes can be realized by integrating actuatable imaging systems with flexible fiber bundles. Conventionally fabricated actuatable endoscopes are, however, limited in their miniaturization capability, typically resulting in system diameters greater than 1 mm. In this work, we present highly compact magnetically actuatable 3D-printed and endoscopically integrated microsystems that are fabricated on the end-facet of imaging fiber bundles using two-photon polymerization. Electromagnetic microcoils affixed to the fiber bundles are utilized to stimulate embedded polymer-magnets to achieve axial, lateral, or rotatory displacement of microoptical elements leading to zooming, resolution enhancement, and increased field of view capabilities. All demonstrated systems achieve overall system diameters well below 900 µm, marking a distinct advancement in the miniaturization of actuatable endoscopic devices. This work demonstrates the feasibility of integrating highly functional and compact optical systems within endoscopes, unlocking new potential for their application in diverse fields, for example in minimally invasive ("keyhole") surgery or intravascular imaging.
Collapse
Affiliation(s)
- Florian Rothermel
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany.
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany.
| | - Andrea Toulouse
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany.
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany.
| | | | | | - Johannes Drozella
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Robert Steinhoff
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| | - Harald Giessen
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
- 4th Physics Institute, University of Stuttgart, Stuttgart, Germany
| | - Alois M Herkommer
- Institute of Applied Optics (ITO), University of Stuttgart, Stuttgart, Germany
- Research Center SCoPE, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Gharib N, Yousefi Darestani MR, Takahata K. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. MICROMACHINES 2025; 16:111. [PMID: 39858766 PMCID: PMC11767618 DOI: 10.3390/mi16010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging. This new scanner architecture removes the need for a separate prism mirror and holding mechanics to drastically simplify the scanner design and thus, potentially enhancing device miniaturization and reliability. The first proof-of-concept is developed using 3D printing and experimentally analyzed to reveal the ability of both angular stepping at 45° and high-speed rotation up to 1500 rpm within the biologically safe temperature range, a key function for multimodal imaging. Preliminary optical testing demonstrates continuous circumferential scanning of the laser beam with no blind spot caused by power leads to the actuator. The results indicate the fundamental feasibility of the developed actuator as an endoscopic distal scanner, a significant step to further development toward advancing optical endoscope technology.
Collapse
Affiliation(s)
- Nirvana Gharib
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Kenichi Takahata
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Moghaddasi M, Perez Coca EE, Ye D, Flores DA, Wu X, Jalal A, Ren Z, Abrinaei F, Hu B. Wide FOV metalens for near-infrared capsule endoscopy: advancing compact medical imaging. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4417-4428. [PMID: 39679179 PMCID: PMC11636453 DOI: 10.1515/nanoph-2024-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 12/17/2024]
Abstract
This study presents the design, fabrication, and characterization of a wide field-of-view (FOV) metalens optimized for capsule endoscopy. The metalens achieved a 165° FOV with a high modulation transfer function (MTF) of 300 lines per millimeter (lp/mm) across the entire FOV, operating in the near-infrared (NIR) narrow-bandpass imaging at 940 nm. The performance of the metalens-based system is evaluated using two bandwidths, 12 nm and 32 nm, showing MTF values of 0.2 and 0.3 at 250 lp/mm, respectively. The metalens-based system maintains a compact form factor with a total track length of 1.4 mm and a diameter of 1.58 mm. Compared to a traditional 108° FOV endoscope, the nano-optic capsule endoscope demonstrated superior performance in terms of FOV, contrast, and resolution. This advancement represents a significant step toward enhancing diagnostic capabilities in medical imaging, offering improved performance in a more compact package compared to conventional optics.
Collapse
Affiliation(s)
- Mojtaba Moghaddasi
- National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | | | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Diego Alejandro Flores
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing100081, China
| | - Xudong Wu
- National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Abdul Jalal
- National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Ziming Ren
- National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Fahimeh Abrinaei
- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bin Hu
- National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Shirazi A, Sahraeibelverdi T, Lee M, Li H, Yu J, Jaiswal S, Oldham KR, Wang TD. Miniature side-view dual axes confocal endomicroscope for repetitive in vivo imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:4277-4295. [PMID: 37799693 PMCID: PMC10549747 DOI: 10.1364/boe.494210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 10/07/2023]
Abstract
A side-view dual axes confocal endomicroscope is demonstrated that can be inserted repetitively in hollow organs of genetically engineered mice for in vivo real-time imaging in horizontal and vertical planes. Near infrared (NIR) excitation at λex = 785 nm was used. A monolithic 3-axis parametric resonance scan mirror was fabricated using micro-electro-mechanical systems (MEMS) technology to perform post-objective scanning in the distal end of a 4.19 mm diameter instrument. Torsional and serpentine springs were designed to "switch" the mode of imaging between vertical and horizontal planes by tuning the actuation frequency. This system demonstrated real-time in-vivo images in horizontal and vertical planes with 310 µm depth and 1.75 and 7.5 µm lateral and axial resolution. Individual cells and discrete mucosal structures could be identified.
Collapse
Affiliation(s)
- Ahmad Shirazi
- Division of Integrative Systems and Design,
University of Michigan, Ann Arbor, MI
48109, USA
| | | | - Miki Lee
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Haijun Li
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Joonyoung Yu
- Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
| | - Sangeeta Jaiswal
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Kenn R Oldham
- Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
| | - Thomas D Wang
- Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
| |
Collapse
|
5
|
Gunalan A, Mattos LS. Towards OCT-Guided Endoscopic Laser Surgery-A Review. Diagnostics (Basel) 2023; 13:diagnostics13040677. [PMID: 36832167 PMCID: PMC9955820 DOI: 10.3390/diagnostics13040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Optical Coherence Tomography (OCT) is an optical imaging technology occupying a unique position in the resolution vs. imaging depth spectrum. It is already well established in the field of ophthalmology, and its application in other fields of medicine is growing. This is motivated by the fact that OCT is a real-time sensing technology with high sensitivity to precancerous lesions in epithelial tissues, which can be exploited to provide valuable information to clinicians. In the prospective case of OCT-guided endoscopic laser surgery, these real-time data will be used to assist surgeons in challenging endoscopic procedures in which high-power lasers are used to eradicate diseases. The combination of OCT and laser is expected to enhance the detection of tumors, the identification of tumor margins, and ensure total disease eradication while avoiding damage to healthy tissue and critical anatomical structures. Therefore, OCT-guided endoscopic laser surgery is an important nascent research area. This paper aims to contribute to this field with a comprehensive review of state-of-the-art technologies that may be exploited as the building blocks for achieving such a system. The paper begins with a review of the principles and technical details of endoscopic OCT, highlighting challenges and proposed solutions. Then, once the state of the art of the base imaging technology is outlined, the new OCT-guided endoscopic laser surgery frontier is reviewed. Finally, the paper concludes with a discussion on the constraints, benefits and open challenges associated with this new type of surgical technology.
Collapse
Affiliation(s)
- Ajay Gunalan
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Leonardo S. Mattos
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Correspondence:
| |
Collapse
|
6
|
Kaur M, Menon C. Submillimeter Sized 2D Electrothermal Optical Fiber Scanner. SENSORS (BASEL, SWITZERLAND) 2022; 23:404. [PMID: 36617001 PMCID: PMC9823315 DOI: 10.3390/s23010404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Optical scanners are used frequently in medical imaging units to examine and diagnose cancers, assist with surgeries, and detect lesions and malignancies. The continuous growth in optics along with the use of optical fibers enables fabrication of imaging devices as small as a few millimeters in diameter. Most forward viewing endoscopic scanners contain an optical fiber acting as cantilever which is vibrated at resonance. In many cases, more than one actuating element is used to vibrate the optical fiber in two directions giving a 2D scan. In this paper, it is proposed to excite the cantilever fiber using a single actuator and scan a 2D region from its vibrating tip. An electrothermal actuator is optimized to provide a bidirectional (horizontal and vertical) displacement to the cantilever fiber placed on it. A periodic current, having a frequency equal to the resonant frequency of cantilever fiber, was passed through the actuator. The continuous expansion and contraction of the actuator enabled the free end of fiber to vibrate in a circle like pattern. A small change in the actuation frequency permitted the scanning of the area inside the circle.
Collapse
Affiliation(s)
- Mandeep Kaur
- MENRVA Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Surrey, BC V3T 0A3, Canada
| | - Carlo Menon
- MENRVA Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Surrey, BC V3T 0A3, Canada
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Wu W, Liu Q, Brandt C, Tang S. Dual-wavelength multimodal multiphoton microscope with SMA-based depth scanning. BIOMEDICAL OPTICS EXPRESS 2022; 13:2754-2771. [PMID: 35774327 PMCID: PMC9203102 DOI: 10.1364/boe.456390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We report on a multimodal multiphoton microscopy (MPM) system with depth scanning. The multimodal capability is realized by an Er-doped femtosecond fiber laser with dual output wavelengths of 1580 nm and 790 nm that are responsible for three-photon and two-photon excitation, respectively. A shape-memory-alloy (SMA) actuated miniaturized objective enables the depth scanning capability. Image stacks combined with two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and third harmonic generation (THG) signals have been acquired from animal, fungus, and plant tissue samples with a maximum depth range over 200 µm.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Qihao Liu
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Christoph Brandt
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| | - Shuo Tang
- Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
8
|
Kaur M, Lane PM, Menon C. Scanning and Actuation Techniques for Cantilever-Based Fiber Optic Endoscopic Scanners-A Review. SENSORS 2021; 21:s21010251. [PMID: 33401728 PMCID: PMC7795415 DOI: 10.3390/s21010251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023]
Abstract
Endoscopes are used routinely in modern medicine for in-vivo imaging of luminal organs. Technical advances in the micro-electro-mechanical system (MEMS) and optical fields have enabled the further miniaturization of endoscopes, resulting in the ability to image previously inaccessible small-caliber luminal organs, enabling the early detection of lesions and other abnormalities in these tissues. The development of scanning fiber endoscopes supports the fabrication of small cantilever-based imaging devices without compromising the image resolution. The size of an endoscope is highly dependent on the actuation and scanning method used to illuminate the target image area. Different actuation methods used in the design of small-sized cantilever-based endoscopes are reviewed in this paper along with their working principles, advantages and disadvantages, generated scanning patterns, and applications.
Collapse
Affiliation(s)
- Mandeep Kaur
- MENRVA Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Surrey, B.C. V3T 0A3, Canada;
- School of Engineering Science, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada;
- Imaging Unit, Integrative Oncology, BC Cancer Research Center, Vancouver, B.C., V5Z 1L3, Canada
| | - Pierre M. Lane
- School of Engineering Science, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada;
- Imaging Unit, Integrative Oncology, BC Cancer Research Center, Vancouver, B.C., V5Z 1L3, Canada
| | - Carlo Menon
- MENRVA Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Surrey, B.C. V3T 0A3, Canada;
- School of Engineering Science, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada;
- Correspondence:
| |
Collapse
|