1
|
Elsayed S, Ahmed Y, El-Anwar MI, Elddamony E, Ashraf R. Influence of different polymeric materials of implant and attachment on stress distribution in implant-supported overdentures: a three-dimensional finite element study. BMC Oral Health 2025; 25:166. [PMID: 39885486 PMCID: PMC11783779 DOI: 10.1186/s12903-025-05440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
PURPOSE Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture. MATERIALS AND METHODS 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments. Linear static stress analysis was carried out by ANSYS 2020 R1. Three identical models were created with different materials for modeling of prosthetic components (implant body, gingival former, ball attachment and matrix). The Monolithic principle was applied as the same material was used in modelling all the prosthetic components in each model (Titanium alloy grade V, poly-ether-ether-ketone (PEEK) and poly-ether-ketone-ketone (PEKK)). Simultaneous Force application of 60 N was carried out bilaterally at the first molar occlusal surface area using 3 runs (vertical, lateral and oblique). RESULTS PEEK and PEKK prosthetic components exhibited the highest total deformation and critical Maximum von Mises stresses values in implant body and gingival former under lateral and oblique loads. The stress values approached the fatigue limit of both polymeric materials presenting low factor of safety (< 1.5). The Peri-implant cortical bone in case of PEEK and PEKK showed nearly double maximum principal stresses compared with the titanium model. Conversely, Maximum von Mises stresses in spongy bone were lower in polymeric models than those of titanium ones. Additionally maximum equivalent strain values in spongy peri-implant bone of polymeric models were also lower than those of titanium model. CONCLUSION Critical high stresses were induced in implant body and gingival former under oblique or lateral loadings, accordingly, fatigue failure of both PEEK and PEKK polymer prosthetic elements was estimated due to low factor of safety. Both PEEK and PEKK Polymer models offered no advantage over titanium one regarding stress shielding effect, due to low stress and strain values generated at spongy peri-implant bone in polymer models.
Collapse
Affiliation(s)
- Sherif Elsayed
- Al-Ryada University for Science and Technology, Sadat City, Menoufia, Egypt
| | - Yousra Ahmed
- Department of Prosthetic Dentistry, Removable Prosthodontics Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt
| | - Mohamed I El-Anwar
- Mechanical Engineering Department, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Enas Elddamony
- Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt
| | - Reem Ashraf
- Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
| |
Collapse
|
2
|
Dipalma G, Inchingolo AM, Trilli I, Ferrante L, Noia AD, de Ruvo E, Inchingolo F, Mancini A, Cocis S, Palermo A, Inchingolo AD. Management of Oro-Antral Communication: A Systemic Review of Diagnostic and Therapeutic Strategies. Diagnostics (Basel) 2025; 15:194. [PMID: 39857078 PMCID: PMC11765130 DOI: 10.3390/diagnostics15020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Aim: This study aims to evaluate the management of oro-antral communications (OAC) and fistulas (OAF), focusing on treatment strategies based on defect size, epithelialization, and the presence of sinus infections, while exploring both traditional and emerging techniques. Materials and Methods: The systematic review was conducted following the PRISMA guidelines and registered on PROSPERO (CDR ID 623251). Using targeted keywords, articles in English published within the last 10 years were analyzed from databases such as PubMed, WoS and Scopus, selecting only clinical studies on human patients. After thorough screening, 20 publications were included in the qualitative analysis, among 734 initially identified. Results: Small OACs (<5 mm) were managed conservatively with hemostatic materials, while larger defects (>5 mm) required surgical closure, with the Bichat flap proving highly effective for large defects. Innovative treatments using autologous bone grafts and PRF showed promise in supporting tissue regeneration. In cases with sinusitis, the combination of FESS and intra-oral closure techniques resulted in high success rates for infection resolution and defect closure. Conclusions: Treatment outcomes for OAC and OAF are highly dependent on the size of the defect and the presence of sinusitis. Multidisciplinary collaboration, along with timely surgical intervention and adherence to medical therapies, is essential for successful management. Emerging techniques and minimally invasive procedures continue to improve patient outcomes, offering hope for more effective and sustainable solutions in complex cases.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Angela Di Noia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| | - Stefan Cocis
- Maxillo-Facial Surgery, Interdisciplinary Department of Medicine, University of Bari, 70100 Bari, Italy;
| | - Andrea Palermo
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (G.D.); (A.M.I.); (I.T.); (L.F.); (A.D.N.); (E.d.R.); (A.M.); (A.D.I.)
| |
Collapse
|
3
|
Vaddamanu SK, Saini RS, Vyas R, Kanji MA, Alshadidi AAF, Hafedh S, Cicciù M, Minervini G. A comparative study on bone density before and after implant placement using osseodensification technique: a clinical evaluation. Int J Implant Dent 2024; 10:56. [PMID: 39560860 PMCID: PMC11576667 DOI: 10.1186/s40729-024-00565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Dental implant success critically depends on the primary stability of the implant, which is significantly influenced by the bone density at the osteotomy site. Traditional drilling techniques for osteotomy preparation often compromise bone volume and quality. This study aimed to evaluate the impact of osseodensification, a novel osteotomy preparation technique, on bone density and implant stability. The technique utilizes specialized drills that operate in a counter-clockwise direction to compact autografted bone laterally and apically, preserving and enhancing bone density. METHODS A total of 32 patients undergoing dental implant surgery were included in this study. Pre-operative and post-operative bone densities at the apical, mesial, and distal regions of the osteotomy sites were measured using Dentascan (CT) and analyzed with Radiant DICOM software. The study utilized osseodensification drills for osteotomy preparation, comparing pre-operative and post-operative bone densities to assess the technique's efficacy. RESULTS The study found a statistically significant increase in bone density post-operatively (p < 0.001), with the greatest improvement observed in the distal region, followed by the mesial and apical regions. The findings underscore osseodensification's effectiveness in enhancing bone density and primary stability, with the distal region exhibiting the highest bone density. CONCLUSION Osseodensification represents a significant advancement in implant dentistry for osteotomy preparation. By preserving and increasing bone density through compact autografting, this technique not only improves primary stability but also offers potential benefits in indirect sinus lifting and alveolar ridge expansion. The study advocates for the broader adoption of osseodensification drills in clinical practice to achieve better outcomes in dental implantology. TRIAL REGISTRATION This study received ethical approval from The Research Ethics Committee at King Khalid University's under Approval no. ECM#2024 - 216. Additionally, it was registered with ClinicalTrials.gov, identifier no: NCT06268639.
Collapse
Affiliation(s)
- Sunil Kumar Vaddamanu
- Department of Allied Dental Health Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ravinder S Saini
- Department of Allied Dental Health Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rajesh Vyas
- Department of Allied Dental Health Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Masroor Ahmed Kanji
- Department of Allied Dental Health Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdulkhaliq Ali F Alshadidi
- Department of Allied Dental Health Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Salah Hafedh
- Orthodontics Department, Faculty of Dentistry, Sana'a University, Sana'a, Yemen.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, Italy
| | - Giuseppe Minervini
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Romasco T, De Bortoli Jr N, Paulo De Bortoli J, Jorge Jayme S, Piattelli A, Di Pietro N. Primary stability evaluation of different morse cone implants in low-density artificial bone blocks: A comparison between high-and low-speed drilling. Heliyon 2024; 10:e35225. [PMID: 39170202 PMCID: PMC11336439 DOI: 10.1016/j.heliyon.2024.e35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
This study aimed to evaluate various biomechanical parameters associated with the primary stability of Maestro and Due Cone implants placed in low-density artificial bones, prepared using high-speed drilling with irrigation and low-speed drilling without irrigation. The insertion torque (IT), removal torque (RT), and implant stability quotient (ISQ) values were recorded for Maestro and Due Cone implants placed in low-density polyurethane blocks (10 and 20 pounds per cubic foot (PCF) with and without a cortical layer) prepared using high-speed and low-speed with or without irrigation using a saline solution, respectively. A three-way ANOVA model and Tukey's post-hoc test were conducted, presenting data as means and standard deviations. P-values equal to or less than 0.05 were considered statistically significant. No statistically significant differences in IT, RT, and ISQ between drilling speeds were observed. However, Maestro implants exhibited lower IT and RT values after high- and low-speed drilling across almost all polyurethane blocks, significantly evident in the 20 PCF density block for IT and in the 20 PCF density block with the cortical layer for the RT with low-speed drilling (IT: 47.33 ± 10.02 Ncm and 16.00 ± 12.49 Ncm for Due Cone and Maestro implants, respectively, with p < 0.01; RT: 44.67 ± 22.81 Ncm and 20.01 ± 4.36 Ncm for Due Cone and Maestro implants, respectively, with p < 0.05) and among the same implant types inserted in different bone densities. Additionally, the study found that for all bone densities and drilling speeds, both implants registered ISQ values exceeding 60, except for the lowest-density polyurethane block. Overall, it can be inferred that low-speed drilling without irrigation achieved biomechanical parameters similar to conventional drilling with both implant types, even with lower IT values in the case of Maestro implants. These findings suggest a promising potential use of low-speed drilling without irrigation in specific clinical scenarios, particularly when focusing on preparation depth or when ensuring proper irrigation is challenging.
Collapse
Affiliation(s)
- Tea Romasco
- Center for Advanced Studies and Technology-CAST, “G. D'Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Nilton De Bortoli Jr
- Department of Oral Implantology, Associação Paulista Dos Cirurgiões Dentistas-APCD, São Bernardo Do Campo, 02011-000, Brazil
| | - Joao Paulo De Bortoli
- Biomaterials Division, New York University College of Dentistry, New York, 10010, NY, USA
| | - Sergio Jorge Jayme
- Department of Dental Materials and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904, Ribeirão Preto, SP, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Av. de Los Jerónimos 135, 30107, Guadalupe de Maciascoque, Spain
| | - Natalia Di Pietro
- Center for Advanced Studies and Technology-CAST, “G. D'Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. D'Annunzio” University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
5
|
Ramalingam K, Yadalam PK, Ramani P, Krishna M, Hafedh S, Badnjević A, Cervino G, Minervini G. Light gradient boosting-based prediction of quality of life among oral cancer-treated patients. BMC Oral Health 2024; 24:349. [PMID: 38504227 PMCID: PMC10949789 DOI: 10.1186/s12903-024-04050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND AND INTRODUCTION Statisticians rank oral and lip cancer sixth in global mortality at 10.2%. Mouth opening and swallowing are challenging. Hence, most oral cancer patients only report later stages. They worry about surviving cancer and receiving therapy. Oral cancer severely affects QOL. QOL is affected by risk factors, disease site, and treatment. Using oral cancer patient questionnaires, we use light gradient Boost Tree classifiers to predict life quality. METHODS DIAS records were used for 111 oral cancer patients. The European Organisation for Research and Treatment of Cancer's QLQ-C30 and QLQ-HN43 were used to document the findings. Anyone could enroll, regardless of gender or age. The IHEC/SDC/PhD/OPATH-1954/19/TH-001 Institutional Ethical Clearance Committee approved this work. After informed consent, patients received the EORTC QLQ-C30 and QLQ-HN43 questionnaires. Surveys were in Tamil and English. Overall, QOL ratings covered several domains. We obtained patient demographics, case history, and therapy information from our DIAS (Dental Information Archival Software). Enrolled patients were monitored for at least a year. After one year, the EORTC questionnaire was retaken, and scores were recorded. This prospective analytical exploratory study at Saveetha Dental College, Chennai, India, examined QOL at diagnosis and at least 12 months after primary therapy in patients with histopathologically diagnosed oral malignancies. We measured oral cancer patients' quality of life using data preprocessing, feature selection, and model construction. A confusion matrix was created using light gradient boosting to measure accuracy. RESULTS Light gradient boosting predicted cancer patients' quality of life with 96% accuracy and 0.20 log loss. CONCLUSION Oral surgeons and oncologists can improve planning and therapy with this prediction model.
Collapse
Affiliation(s)
- Karthikeyan Ramalingam
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India.
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Murugesan Krishna
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Salah Hafedh
- Orthodontics Department, Faculty of Dentistry, Sana'a University, Sana'a, Yemen.
| | - Almir Badnjević
- Verlab Research Institute for Biomedical Engineering, Medical Devices, and Artificial Intelligence, Ferhadija 27, Sarajevo, 71 000, Bosnia and Herzegovina
| | - Gabriele Cervino
- Dental Sciences and Morphofunctional Imaging, University of Messina - Policlinico "Gaetano Martino", Via Consolare Valeria, Messina, ME, 98100, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Minervini G, Marrapodi MM, Siurkel Y, Cicciù M, Ronsivalle V. Accuracy of temporomandibular disorders diagnosis evaluated through the diagnostic criteria for temporomandibular disorder (DC/TDM) Axis II compared to the Axis I evaluations: a systematic review and meta-analysis. BMC Oral Health 2024; 24:299. [PMID: 38431574 PMCID: PMC10909276 DOI: 10.1186/s12903-024-03983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) is a complex joint that facilitates mandibular movements during speech, chewing, and swallowing activities. The Axis I evaluation of the DC/TMD focuses on assessing physical diagnoses related to TMDs. It includes an assessment of pain and functional limitations, such as jaw opening range, joint sounds, and joint tenderness. The Axis II evaluation of the DC/TMD provides information on the patient's psychological status and quality of life. This Systematic Review with Meta-Analysis aimed to evaluate the accuracy of Temporomandibular Disorders diagnosis considered through the Diagnostic Criteria for Temporomandibular Disorder (DC/TDM) axis II compared to the Axis I evaluations. METHODS A search was made in PubMed, Web of Science and Lilacs for articles published from the inception until 20 January 2023. We applied the Population, Exposure, Comparator, and Outcomes (PECO) model [1] to assess document eligibility. Only studies that evaluated patients by DC/TMD Axis I and Axis II were considered. Review Manager version 5.2.8 (Cochrane Collaboration) was used for the pooled analysis. We measured the odds ratio (OR) between the two groups (Axis I and Axis II). RESULTS Fifty-one articles were selected because of the search. Four papers were excluded before the screening: 2 pieces were not in English, and two were reviewed. The remaining 47 articles were selected for the title and abstract screening to evaluate whether they met the PECO criteria. Among these, four papers were established; the overall effect showed that there was no difference in TMD diagnosis between Axis I and Axis II (RR 1.17; 95% CI: 0.80- 1.71; Z:0.82; P = .41), suggesting that there is no difference between Axis I and Axis II. CONCLUSION In conclusion, DC/TMD is an effective tool for the diagnosis of TMD. It improves the accuracy of TMD diagnosis, allows for the classification of subtypes, and assesses psychosocial factors that may impact the development or maintenance of TMD symptoms.
Collapse
Affiliation(s)
- Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, Caserta, 81100, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania, Luigi Vanvitelli, Naples, 80121, Italy.
| | - Yuliia Siurkel
- International European University School of Medicine, Akademika Hlushkova Ave, 42В, Kyiv, 03187, Ukraine.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Vincenzo Ronsivalle
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| |
Collapse
|
7
|
Minervini G. Dentistry: A Multidisciplinary Approach. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:401. [PMID: 38541127 PMCID: PMC10972063 DOI: 10.3390/medicina60030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 01/03/2025]
Abstract
In this special issue of Medicina, we delve into the dynamic and ever-evolving world of dentistry, highlighting the remarkable innovations that are shaping the future of oral health and clinical dentistry practice [...].
Collapse
Affiliation(s)
- Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India;
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
8
|
Antonelli A, Barone S, Attanasio F, Salviati M, Cerra MG, Calabria E, Bennardo F, Giudice A. Effect of Implant Macro-Design and Magnetodynamic Surgical Preparation on Primary Implant Stability: An In Vitro Investigation. Dent J (Basel) 2023; 11:227. [PMID: 37886912 PMCID: PMC10605303 DOI: 10.3390/dj11100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Macro-geometry and surgical implant site preparation are two of the main factors influencing implant stability and potentially determining loading protocol. The purpose of this study was to assess the initial stability of various implant macro-designs using both magnetodynamic and traditional osteotomy techniques in low-density bone. The parameters examined included peak insertion torque (PIT), implant stability quotient (ISQ), and peak removal torque (PRT). METHODS Four groups of 34 implants each were identified in accordance with the surgery and implant shape: T5 group (Five implant and osteotomy using drills); M5 group (Five implant and magnetodynamic osteotomy using Magnetic Mallet); TT group (TiSmart implant and osteotomy with drills); and MT group (TiSmart implant and magnetodynamic osteotomy). Every implant was placed into a low-density bone animal model and scanned using CBCT. The PIT and PRT were digitally measured in Newton-centimeters (Ncm) using a torque gauge device. The ISQ was analyzed by conducting resonance frequency analysis. RESULTS The PIT values were 25.04 ± 4.4 Ncm for T5, 30.62 ± 3.81 Ncm for M5, 30 ± 3.74 Ncm for TT, and 32.05 ± 3.55 Ncm for MT. The average ISQ values were 68.11 ± 3.86 for T5, 71.41 ± 3.69 for M5, 70.88 ± 3.08 for TT, and 73 ± 3.5 for MT. The PRT values were 16.47 ± 4.56 Ncm for T5, 26.02 ± 4.03 Ncm for M5, 23.91 ± 3.28 Ncm for TT, and 26.93 ± 3.96 Ncm for MT. Based on our data analysis using a t-test with α = 0.05, significant differences in PIT were observed between TT and T5 (p < 0.0001), M5 and T5 (p < 0.0001), and MT and TT (p = 0.02). Significant differences in the ISQ were found between TT and T5 (p = 0.001), M5 and T5 (p < 0.001), and MT and TT (p = 0.01). The PRT also exhibited significant differences between TT and T5, M5 and T5, and MT and TT (p < 0.0001). CONCLUSION Our data showed favorable primary implant stability (PS) values for both implant macro-geometries. Furthermore, the magnetodynamic preparation technique appears to be more effective in achieving higher PS values in low-density bone.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Bennardo
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.A.); (S.B.); (F.A.); (M.S.); (M.G.C.); (E.C.); (A.G.)
| | | |
Collapse
|
9
|
Minervini G, D'Amico C, Cicciù M, Fiorillo L. Temporomandibular Joint Disk Displacement: Etiology, Diagnosis, Imaging, and Therapeutic Approaches. J Craniofac Surg 2023; 34:1115-1121. [PMID: 36730822 DOI: 10.1097/scs.0000000000009103] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2022] [Indexed: 02/04/2023] Open
Abstract
An estimated 8 to 15% of women, and 3 to 10% of men currently suffer from Temporomandibular disorders, and it has been reported that sounds are a common finding and have been observed in 28% to 50% of the adult population; sounds are almost always connected to "internal derangements" a condition in which the articular disk displaced from its position on the mandibular condyle. Due to the multifactorial etiology of temporomandibular joint dysfunction, any accurate diagnosis based on clinical examination alone often proves to be difficult, so a clinical examination should be utilized together with other imaging methods to determine the relationship between the disk and condyle before and after treatment. In general, management of temporomandibular joint-related conditions is necessary when pain or dysfunction is present, so many surgical or nonsurgical methods of treatment have been reported. The Occlusal splint is 1 of the most widespread treatment it induces a slight vertical condylar distraction and eliminates the occlusal factor, which can be responsible for Temporomandibular joint disturbances, removing the influence of the teeth on the joint position by the slight distraction of the joint which, in turn, enables damaged connective tissue to heal.
Collapse
Affiliation(s)
- Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Naples, Italy
| | - Cesare D'Amico
- School of Dentistry Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Cicciù
- School of Dentistry Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Luca Fiorillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Naples, Italy
- School of Dentistry Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Department of Dentistry, University of Aldent, Tirana, Albania
| |
Collapse
|
10
|
Bennardo F, Barone S, Buffone C, Colangeli W, Antonelli A, Giudice A. Removal of dental implants displaced into the maxillary sinus: a retrospective single-center study. Head Face Med 2022; 18:34. [PMCID: PMC9670493 DOI: 10.1186/s13005-022-00339-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background The use of dental implants in the prosthetic rehabilitation of the posterior atrophic maxilla might be a challenge procedure because of low bone quantity and quality. This study aimed to report cases of implant displacement or migration into the maxillary sinus treated from 2008 to 2021. Materials and methods All patients with unintentional insertion and/or displacement of dental implants into the maxillary sinus cavity that underwent surgical removal were included. Variables assessed included the patients’ characteristics, past medical history, clinical and radiological findings at presentation, surgical approach (transoral, transnasal, combined), and outcome. Results A total of forty patients (23 male, 17 female) underwent surgical removal of dental implant displaced in the maxillary sinus. The mean age was 52,3 + 11,3 years. Seven patients presented with oro-antral fistula (OAF). In 15 cases, an ostium obstruction was diagnosed. Twenty-five patients underwent transoral surgery under local anesthesia. Eleven patients were treated solely via transnasal endoscopic approach, and four patients who had an associated OAF underwent surgery through a combined transnasal and transoral approach. All patients healed uneventfully without complications. Conclusion These results and recent literature validate that transoral and transnasal approach, or a combination of these procedures, can be used safely to treat complications following displacement/migration of dental implants in the maxillary sinus. Early surgical removal minimizes sinus inflammation and prevents more invasive procedures. Each procedure presents specific indications that must be carefully evaluated prior to treatment choice to optimize intervention outcomes.
Collapse
Affiliation(s)
- Francesco Bennardo
- grid.411489.10000 0001 2168 2547School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Selene Barone
- grid.411489.10000 0001 2168 2547School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Caterina Buffone
- grid.411489.10000 0001 2168 2547School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Walter Colangeli
- grid.411489.10000 0001 2168 2547Unit of Maxillofacial Surgery, Academic Hospital of Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Antonelli
- grid.411489.10000 0001 2168 2547School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- grid.411489.10000 0001 2168 2547School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ,grid.411489.10000 0001 2168 2547Unit of Maxillofacial Surgery, Academic Hospital of Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
11
|
Scanning Electron Microscopy Analyses of Dental Implant Abutments Debonded from Monolithic Zirconia Restorations Using Heat Treatment: An In Vitro Study. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: The aim of this in vitro study is to present a debonding protocol developed to remove a screw-retained, monolithic, zirconia restoration from its titanium-base abutment, and to microscopically evaluate the abutment integrity at both the prosthetic and connection levels. Materials and Methods: A total of 30 samples were tested. Each sample consisted of a monolithic zirconia restoration bonded on a titanium link abutment. Five different shapes were designed and fabricated. Randomly, one-third of the Ti-link abutments were subjected to an anodizing process. Then, all the zirconia samples were bonded to the Ti-link abutments according to a pre-established protocol. Forty-eight hours later, the samples were debonded according to the experimental protocol. The outcomes were evaluated by a visual inspection with an optical microscope, scanning electron microscopy (SEM), and chemical composition analysis. Results: Thirty samples were collected and visually analyzed. Seven samples were randomly evaluated via scanning electron microscopy. In all the examinations, no relevant changes were reported. Chemical composition analysis also relieved no changes in the chemical structure of the titanium. Conclusions: The titanium-base abutments do not alter the structure and properties of the material, not creating phase changes or the birth of oxides such as to induce fragility. Further clinical studies with longer follow-up periods are needed to confirm these preliminary results.
Collapse
|
12
|
Nimmawitt P, Aliyu AAA, Lohwongwatana B, Arunjaroensuk S, Puncreobutr C, Mattheos N, Pimkhaokham A. Understanding the Stress Distribution on Anatomic Customized Root-Analog Dental Implant at Bone-Implant Interface for Different Bone Densities. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6379. [PMID: 36143689 PMCID: PMC9506153 DOI: 10.3390/ma15186379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to assess the stress distribution on the bone tissue and bone-implant interface of a customized anatomic root-analog dental implant (RAI) by means of finite element analysis (FEA) for different types of bone density. A mandibular right second premolar was selected from the CBCT database. A DICOM file was converted to an STL file to create a CAD model in FEA software. The bone boundary model was created, while bone density types I-IV were determined. Von Mises stress was measured at bone tissues and bone-implant interfaces. To validate the models, the RAI was 3D printed through a laser powder-bed fusion (L-PBF) approach. The results revealed that all RAI designs could not cause plastic deformation or fracture resulting in lower stress than the ultimate tensile stress of natural bone and implant. Compared to a conventional screw-type implant, RAIs possess a more favorable stress distribution pattern around the bone tissue and the bone-implant interface. The presence of a porous structure was found to reduce the stress at cancellous bone in type IV bone density.
Collapse
Affiliation(s)
- Pawhat Nimmawitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abdul Azeez Abdu Aliyu
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonrat Lohwongwatana
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirida Arunjaroensuk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chedtha Puncreobutr
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nikos Mattheos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Dental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Atiphan Pimkhaokham
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Canullo L, Iacono R, Pires Godoy E, Punzo A, Cavicchia A, Gianfreda F, Bollero P. Hybrid Funnel Technique: A Novel Approach for Implant Site Preparation: A Pilot Study. Dent J (Basel) 2022; 10:157. [PMID: 36135152 PMCID: PMC9497956 DOI: 10.3390/dj10090157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Different techniques and tools have been developed for implant site preparation. In this clinical scenario, Hybrid Funnel Technique (HFT), a novel osteotomy procedure, has been proposed. (2) Aim: The aim of this retrospective observational study was to consider the different responses to compression of the histological bony compartments (cancellus and cortical). HFT involves the use of multiple drills for the cortical layer preparation and of an osteotome for the osteocompaction of the cancellous bone. (3) Materials and Methods: Following computer-supported implant planning and guided surgery, 10 osteotomies with HFT were performed and 10 implants with the same length and diameter were placed in seven healthy and no daily smoking patients. Periapical X-ray and intraoral photographs were performed at baseline and after 12 months of follow-up to evaluate marginal bone level (MBL) changes and aesthetic results obtained from implant prosthetic rehabilitation. (4) Results: At 1 year of follow-up, 100% of the implants were successfully integrated, MBL change mean value was 0.17 mm ± 0.21. No differences in terms of MBL were noted between thin and thick biotypes. Pink esthetic score (PES) and white esthetic score (WES), assessed one year after definitive restoration placement, were 7.5 ± 2.3 and 8.5 ± 1.1, respectively. (5) Conclusions: Based on the findings of this preliminary clinical study, HFT has led to stability of peri-implant tissues and could represent a reliable technique for surgical preparation of the implant site.
Collapse
Affiliation(s)
- Luigi Canullo
- Department of Periodontology, University of Bern, 3012 Bern, Switzerland
| | - Roberta Iacono
- F.A.S Screening for Prevention and Oral Health, Department of Oral and Maxillofacial Science, Sapienza University of Rome, 00185 Rome, Italy
| | - Eduardo Pires Godoy
- Department of Oral Biology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo 14040-904, Brazil
| | | | - Alessio Cavicchia
- Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Gianfreda
- Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Patrizio Bollero
- Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
14
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
15
|
Postsurgical Pain and Implant Osseointegration Failure: A Case Control Study. Int J Dent 2022; 2022:5271892. [PMID: 35847348 PMCID: PMC9283066 DOI: 10.1155/2022/5271892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Aim. The relationship between postsurgical pain and osseointegration was evaluated and analyzed in this study. Material and method. 27 patients, ranging in age from 35 to 72 years old, 12 males and 15 females, who received dental implants and failed to achieve osseointegration from Tianjin Medical University Second Hospital, were analyzed and studied in the following aspects: bone density, initial torque, one- or two-stage surgery, postsurgical pain, postsurgical swelling, and radiographic evidence of osseointegration failure. Result. 5 patients were assessed to be D4 bone density and 7 cases were assessed to be D3 bone density, 2 patients were assessed to be D2 bone density and 13 patients were assessed to be D1 bone density. All cases were documented with clinically acceptable initial torque. Among the 27 cases, 2 of them were one-stage nonsubmerged surgery and 25 cases were two-stage submerged surgery. 25 out of 27 patients reported moderate to severe pain lasting for more than 72 hours. Radiologic examinations failed to offer any indication of poor osseointegration in the 7-day postsurgical follow-up. Conclusion. Moderate to severe postsurgical pain lasting more than 72 hours displays high odd ratio of poor osseointegrate. The radiological examinations alone failed to offer any valuable evidence for the early detection of osseointegration failure in this study.
Collapse
|
16
|
AK B, Eroğlu EG, Ertugrul AS, Öztürk AB, Yılmaz ŞN. Non-Destructive Removal of Dental Implant by Using the Cryogenic Method. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070849. [PMID: 35888569 PMCID: PMC9319264 DOI: 10.3390/medicina58070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Background and Objectives: The gold standard for a successful prosthetic approach is the osseointegration of an implant. However, this integration can be a problem in cases where the implant needs to be removed. Removing the implant with minimal damage to the surrounding tissues is important. Osteocytes cannot survive below −2 °C, but epithelial cells, fibroblasts, and other surrounding tissue cells can. Remodeling can be triggered by cryotherapy at temperatures that specifically affect osteocyte necrosis. In this study, we aimed to develop a method for reversing the osseointegration mechanism and for protecting the surrounding tissues by bone remodeling induced by CO2 cryotherapy. Materials and Methods: In this study, eight 2.8 mm diameter, one-piece mini implants were used in New Zealand rabbit tibias. Two control and six implants were tested in this study. After 2 months of osseointegration, a reverse torque force method was used to remove all osseointegrated implants at 5, 10, 20, and 30 Ncm. The osseointegration of the implants was proven by periotest measurements. Changes in bone tissue were examined in histological sections stained with toluidine blue after rabbit sacrifice. The number of lacunae with osteocyte, empty lacunae, and lacunae greater than 5 µm and the osteon number in a 10,000 µm2 area were calculated. Cryotherapy was applied to the test implants for 1 min, 2 min, and 5 min. Three implants were subjected to cryotherapy at −40 °C, and the other implants were subjected to cryotherapy at −80 °C. Results: Empty lacunae, filled osteocytes, lacunae >5 µm, and the osteon count around the implant applied at −40 °C were not significantly different from the control implants. The application of −40 °C for 1 min was found to cause minimal damage to the bone cells. The implants, which were applied for 1 min and 2 min, were successfully explanted on the 2nd day with the 5 Ncm reverse torque method. Test implants, which were applied cold for 5 min, were explanted on day 1. Tissue damage was detected in all test groups at −80 °C. Conclusions: The method of removing implants with cryotherapy was found to be successful in −40 °C freeze−thaw cycles applied three times for 1 min. To prove implant removal with cryotherapy, more implant trials should be conducted.
Collapse
Affiliation(s)
- Burak AK
- Periodontology Department, Faculty of Dentistry, Mersin University, 33343 Mersin, Turkey
- Correspondence:
| | - Emre Gürkan Eroğlu
- Periodontology Department, Faculty of Dentistry, Izmir Katip Çelebi University, 35620 Izmir, Turkey; (E.G.E.); (A.S.E.)
| | - Abdullah Seckin Ertugrul
- Periodontology Department, Faculty of Dentistry, Izmir Katip Çelebi University, 35620 Izmir, Turkey; (E.G.E.); (A.S.E.)
| | - Ayla Batu Öztürk
- Department of Histology and Embryology, School of Medicine, Mersin University, 33343 Mersin, Turkey; (A.B.Ö.); (Ş.N.Y.)
| | - Şakir Necat Yılmaz
- Department of Histology and Embryology, School of Medicine, Mersin University, 33343 Mersin, Turkey; (A.B.Ö.); (Ş.N.Y.)
| |
Collapse
|
17
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
18
|
A Novel Method for Digital Reconstruction of the Mucogingival Borderline in Optical Scans of Dental Plaster Casts. J Clin Med 2022; 11:jcm11092383. [PMID: 35566508 PMCID: PMC9099921 DOI: 10.3390/jcm11092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Adequate soft-tissue dimensions have been shown to be crucial for the long-term success of dental implants. To date, there is evidence that placement of dental implants should only be conducted in an area covered with attached gingiva. Modern implant planning software does not visualize soft-tissue dimensions. This study aims to calculate the course of the mucogingival borderline (MG-BL) using statistical shape models (SSM). Visualization of the MG-BL allows the practitioner to consider the soft tissue supply during implant planning. To deploy an SSM of the MG-BL, healthy individuals were examined and the intra-oral anatomy was captured using an intra-oral scanner (IOS). The empirical anatomical data was superimposed and analyzed by principal component analysis. Using a Leave-One-Out Cross Validation (LOOCV), the prediction of the SSM was compared with the original anatomy extracted from IOS. The median error for MG-BL reconstruction was 1.06 mm (0.49–2.15 mm) and 0.81 mm (0.38–1.54 mm) for the maxilla and mandible, respectively. While this method forgoes any technical work or additional patient examination, it represents an effective and digital method for the depiction of soft-tissue dimensions. To achieve clinical applicability, a higher number of datasets has to be implemented in the SSM.
Collapse
|
19
|
Comparative Stress Analysis of Polyetherketoneketone (PEKK) Telescopic Crowns Supported by Different Primary Crown Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present study aimed to investigate the stress distribution of secondary telescopic crowns made of polyetherketoneketone (PEKK) combined with different primary crown (PC) materials (Zirconia, CoCr, Titanium, and PEKK) using finite element analysis. The geometric model was composed of bone tissue, periodontal ligament, root dentin, cement layer, primary crown, and secondary telescopic crown (SC). A total of four models were evaluated in which the secondary crowns were simulated in PEKK. The models were designed in CAD software and exported to the computer aided engineering software for the statistic structural analysis simulation. The materials were considered isotropic, with linear behavior and elastic properties. The model was fixed in the bone base and the load was applied at the occlusal surface of the crowns with 600 N. The results were required in von-Mises stress for the primary crown, secondary crown, cement layer, and Equivalent Strain to the periodontal ligament and bone tissue. Results show that the material influenced the stress distribution. The higher the PC elastic modulus, the higher the stress magnitude on the SC and cement layer. In the present study, the use of milled high-density polymer for primary crown presented a promising biomechanical behavior as an alternative material for double-crown design.
Collapse
|
20
|
Bennardo F, Barone S, Vocaturo C, Nucci L, Antonelli A, Giudice A. Usefulness of Magnetic Mallet in Oral Surgery and Implantology: A Systematic Review. J Pers Med 2022; 12:jpm12010108. [PMID: 35055423 PMCID: PMC8781210 DOI: 10.3390/jpm12010108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/03/2023] Open
Abstract
This systematic review aimed to answer the question: “Is the use of magnetic mallet effective in oral and implant surgery procedures in terms of tissue healing, surgery outcome, and complication rate compared to traditional instruments?” A literature search of PubMed, Scopus, and Web of Science databases (articles published until 1 October 2021) was conducted, in accordance with the PRISMA statement, using the keywords “magnetic mallet”, “electric mallet”, “oral surgery”, “implantology”, and “dental implant”. Of 252 articles, 14 were included in the review (3 for teeth extraction, and 11 for implant dentistry). Out of a total of 619 dental extractions (256 patients) performed with the magnetic mallet (MM), no complications were reported. Implants inserted totaled 880 (525 patients): 640 in the MM groups (382), and 240 in control groups (133). The survival rate of implants was 98.9% in the MM groups, and 95.42% in the control groups. Seven patients experienced benign paroxysmal positional vertigo after implant surgery, all in control groups. Results are not sufficient to establish the effectiveness of MM in oral and implant surgery procedures. Randomized controlled trials with a large sample size are needed.
Collapse
Affiliation(s)
- Francesco Bennardo
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.B.); (A.G.)
- Correspondence: (F.B.); (A.A.); Tel.: +39-346-180-2826 (F.B.); +39-392-231-8180 (A.A.)
| | - Selene Barone
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.B.); (A.G.)
| | | | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Study of Campania, Luigi Vanvitelli, 80138 Naples, Italy;
| | - Alessandro Antonelli
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.B.); (A.G.)
- Correspondence: (F.B.); (A.A.); Tel.: +39-346-180-2826 (F.B.); +39-392-231-8180 (A.A.)
| | - Amerigo Giudice
- School of Dentistry, Department of Health Sciences, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.B.); (A.G.)
| |
Collapse
|
21
|
Evaluation of Stress Distribution during Insertion of Tapered Dental Implants in Various Osteotomy Techniques: Three-Dimensional Finite Element Study. MATERIALS 2021; 14:ma14247547. [PMID: 34947142 PMCID: PMC8704667 DOI: 10.3390/ma14247547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
Abstract
Conventional osteotomy techniques can, in some cases, induce higher stress on bone during implant insertion as a result of higher torque. The aim of the present study was to evaluate and compare the stress exerted on the underlying osseous tissues during the insertion of a tapered implant using different osteotomy techniques through a dynamic finite element analysis which has been widely applied to study biomedical problems through computer-aided software. In three different types of osteotomy techniques, namely conventional (B1), bone tap (B2), and countersink (B3), five models and implants designed per technique were prepared, implant insertion was simulated, and stress exerted by the implant during each was evaluated. Comparison of stress scores on the cortical and cancellous bone at different time points and time intervals from initiation of insertion to the final placement of the implant was made. There was a highly statistically significant difference between B1 and B2 (p = 0.0001) and B2 and B3 (p = 0.0001) groups. In contrast, there was no statistically significant difference in the stress scores between B1 and B3 (p = 0.3080) groups at all time points of implant placement. Overall, a highly significant difference was observed between the stresses exerted in each technique. Within the limitations of our study, bone tap significantly exerted lesser stresses on the entire bone than conventional and countersink type of osteotomy procedures. Considering the stress distribution at the crestal region, the countersink showed lower values in comparison to others.
Collapse
|
22
|
Stokovic N, Ivanjko N, Erjavec I, Breski A, Peric M, Vukicevic S. Zoledronate Bound to Ceramics Increases Ectopic Bone Volume Induced by rhBMP6 Delivered in Autologous Blood Coagulum in Rats. Biomedicines 2021; 9:biomedicines9101487. [PMID: 34680604 PMCID: PMC8533060 DOI: 10.3390/biomedicines9101487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) with synthetic ceramics is a novel therapeutic solution for bone repair. The aim of this study was to investigate whether the application of Zoledronate (ZOL) with ABGS might enhance the properties of newly formed bone. The effect of ZOL on bone induction was tested in a rat subcutaneous implant model. ZOL bound to synthetic ceramics was added into ABGS implants, and the quantity, quality, and longevity of the induced bone were assessed by micro-CT, histomorphometry, and histology over a period of 365 days. Local use of ZOL in the ABGS implants with ceramics had no influence on the bone volume (BV) on day 14 but subsequently significantly increased BV on days 35, 50, 105, 140, and 365 compared to the control implants. Locally applied ZOL had a similar effect in all of the applied doses (2–20 µg), while its systemic use on stimulating the BV of newly induced bone by ABGS depended on the time of application. BV was increased when ZOL was applied systemically on day 14 but had no effect when applied on day 35. The administration of ZOL bound to ceramics in ABGS increased and maintained the BV over a period of one year, offering a novel bone tissue engineering strategy for treating bone defects and spinal fusions.
Collapse
Affiliation(s)
- Nikola Stokovic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Igor Erjavec
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
| | - Anita Breski
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Mihaela Peric
- Department for Intracellular Communication, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Centre for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (N.S.); (N.I.); (I.E.)
- Correspondence:
| |
Collapse
|
23
|
Marconi GD, Fonticoli L, Della Rocca Y, Rajan TS, Piattelli A, Trubiani O, Pizzicannella J, Diomede F. Human Periodontal Ligament Stem Cells Response to Titanium Implant Surface: Extracellular Matrix Deposition. BIOLOGY 2021; 10:931. [PMID: 34571808 PMCID: PMC8470763 DOI: 10.3390/biology10090931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
The major challenge for dentistry is to provide the patient an oral rehabilitation to maintain healthy bone conditions in order to reduce the time for loading protocols. Advancement in implant surface design is necessary to favour and promote the osseointegration process. The surface features of titanium dental implant can promote a relevant influence on the morphology and differentiation ability of mesenchymal stem cells, induction of the osteoblastic genes expression and the release of extracellular matrix (ECM) components. The present study aimed at evaluating the in vitro effects of two different dental implants with titanium surfaces, TEST and CTRL, to culture the human periodontal ligament stem cells (hPDLSCs). Expression of ECM components such as Vimentin, Fibronectin, N-cadherin, Laminin, Focal Adhesion Kinase (FAK) and Integrin beta-1 (ITGB1), and the osteogenic related markers, as runt related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), were investigated. Human PDLSCs cultured on the TEST implant surface demonstrated a better cell adhesion capability as observed by Scanning Electron Microscopy (SEM) and immunofluorescence analysis. Moreover, immunofluorescence and Western blot experiments showed an over expression of Fibronectin, Laminin, N-cadherin and RUNX2 in hPDLSCs seeded on TEST implant surface. The gene expression study by RT-PCR validated the results obtained in protein assays and exhibited the expression of RUNX2, ALP, Vimentin (VIM), Fibronectin (FN1), N-cadherin (CDH2), Laminin (LAMB1), FAK and ITGB1 in hPDLSCs seeded on TEST surface compared to the CTRL dental implant surface. Understanding the mechanisms of ECM components release and its regulation are essential for developing novel strategies in tissue engineering and regenerative medicine. Our results demonstrated that the impact of treated surfaces of titanium dental implants might increase and accelerate the ECM apposition and provide the starting point to initiate the osseointegration process.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (G.D.M.); (A.P.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| | | | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (Y.D.R.); (O.T.); (F.D.)
| |
Collapse
|
24
|
Counterclockwise Drilling with Different Tapered Drills Condenses the Implant Bed-An Optical Coherence Tomography In Vitro Study. MEDICINA-LITHUANIA 2021; 57:medicina57090940. [PMID: 34577863 PMCID: PMC8467273 DOI: 10.3390/medicina57090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
Background and Objectives: To evaluate the condensation and the microarchitecture of implant bed walls of sites prepared with counterclockwise drilling with tapered implant drills using optical coherence tomography. Materials and Methods: Four drill designs with different wall and tip angles were used. Polyurethane laminas resembling type IV bone microarchitecture were superimposed and clamped with a vice to simulate the coronal, middle, and apical aspects of the implant site. Twenty implant beds were prepared at 1200 rpm in clockwise (control) and counterclockwise (test) directions (N = 160). Optical coherence tomography (OCT) was used to evaluate the condensation and microarchitecture characteristics of the implant bed walls. The relative condensation was calculated using the Image J software Bone application. The microarchitecture was evaluated in reconstructed 3D volumes in XY, XZ, and YZ sections. Statistical analysis was performed using one-way ANOVA. Dunnet test was applied to determine differences between groups. Significance was set as p < 0.05. Results: Counterclockwise drilling (Test) condensed and changed the microarchitecture of the apical regions for all the implant beds in all of the groups when compared to clockwise drilling (control). The apical region of test groups showed the highest relative bone condensation (p = 0.026) when compared to controls. Conclusions: The direction of rotation (counterclockwise drilling) and not the design of tapered drills (tip and wall angles) is responsible for the condensation at the apical area observed in polyurethane blocks. The OCT method can be used for the evaluation of changes in density and microstructure of polyurethane blocks.
Collapse
|
25
|
An In Vitro Analysis on Polyurethane Foam Blocks of the Insertion Torque (IT) Values, Removal Torque Values (RTVs), and Resonance Frequency Analysis (RFA) Values in Tapered and Cylindrical Implants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179238. [PMID: 34501824 PMCID: PMC8431239 DOI: 10.3390/ijerph18179238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Background: Several different dental implant microgeometries have been investigated in the literature for use in low-density bone sites. The polyurethane solid rigid blocks represent an optimal in vitro study model for dental implants, because their composition is characterized by symmetrical linear chains of monomers of hexa-methylene sequences producing a self-polymerization process. The aim of the present investigation was to evaluate the primary stability of cylindrical and tapered implants positioned into low-density polyurethane solid rigid blocks. Materials and Methods: Two different macrogeometries, cylindrical (4 mm diameter and 10 mm length) and tapered dental implants (4.20 mm diameter and 10 mm length), were investigated in the present study. The implants were inserted into 10 PCF and 20 PCF polyurethane blocks, with and without an additional cortical layer. The insertion torque (IT) values, the removal torque values (RTVs), and the resonance frequency analysis (RFA) values were measured and recorded. Results: A total of 80 sites were tested, and a significant increased primary stability (PS) was detected in favour of tapered dental implants when compared to cylindrical implants in all experimental conditions (p < 0.05). Higher IT, RT, and RFA values were measured in tapered implants in 10 and 20 PCF polyurethane blocks, both with and without the additional cortical layer. Conclusions: Both implants showed sufficient primary stability in poor density substrates, while, on the other hand, the tapered microgeometry showed characteristics that could also lead to clinical application in low-density posterior maxillary sites, even with a drastically decreased bone cortical component.
Collapse
|
26
|
Functional and Patient-Centered Treatment Outcomes with Mandibular Overdentures Retained by Two Immediate or Conventionally Loaded Implants: A Randomized Clinical Trial. J Clin Med 2021; 10:jcm10163477. [PMID: 34441773 PMCID: PMC8396916 DOI: 10.3390/jcm10163477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/25/2022] Open
Abstract
This study aims to assess the treatment outcomes (functional and subjective) of mandibular overdentures retained on two implants with or without an immediate loading protocol. In this randomized clinical trial, twenty fully edentulous patients were treated with a mandibular two-implant-retained overdenture and a complete new maxillary denture. In half of the sample, the implants were loaded immediately by means of VulkanLoc® abutments after emplacement of the implant, but in the counterparts, these VulkanLoc® abutments were connected to implants two months after the surgery (conventional protocol), and until that time the dentures were retained by healing abutments. Treatment outcomes were assessed at two, six, and twelve months after surgery. Functional outcomes were calculated according to masticatory performance, estimated by the mixed fraction of a two-coloured chewing gum after five, ten, and fifteen chewing strokes, by the occlusal force recorded by pressure-sensitive sheets, and by the bioelectrical muscular activity. The subjective outcomes of the treatment were assessed using both the oral satisfaction scale (visual analogue scale) and the Spanish version of the Oral Health Impact Profile (OHIP-20). The findings of the present study show that new complete dentures resulted in significant improvements in chewing ability, patient satisfaction, and oral health-related quality of life and that subsequent implant-retained overdentures produced further and faster significant improvements. The loading protocol may influence those positive self-reported outcomes rather than the objective functional evaluations.
Collapse
|
27
|
Contaldo M, De Rosa A, Nucci L, Ballini A, Malacrinò D, La Noce M, Inchingolo F, Xhajanka E, Ferati K, Bexheti-Ferati A, Feola A, Di Domenico M. Titanium Functionalized with Polylysine Homopolymers: In Vitro Enhancement of Cells Growth. MATERIALS 2021; 14:ma14133735. [PMID: 34279306 PMCID: PMC8269806 DOI: 10.3390/ma14133735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
In oral implantology, the success and persistence of dental implants over time are guaranteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival.
Collapse
Affiliation(s)
- Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (A.D.R.); (L.N.)
- Correspondence: (M.C.); (M.D.D.); Tel.: +39-32-0487-6058 (M.C.)
| | - Alfredo De Rosa
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (A.D.R.); (L.N.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (A.D.R.); (L.N.)
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario Ernesto Quagliariello, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Davide Malacrinò
- Department of Research, Development and Quality Assessment, AISER SA, Rue du Rhone, 14 VH-1204 Genève, Switzerland;
| | - Marcella La Noce
- Department of Experimental Medicine, Università Degli Studi della Campania Luigi Vanvitelli, Campania, 80138 Naples, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy;
| | - Edit Xhajanka
- Department of Dental Prosthesis, Medical University of Tirana, Rruga e Dibrës, U.M.T., 1001 Tirana, Albania;
| | - Kenan Ferati
- Faculty of Medicine, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | | | - Antonia Feola
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (M.C.); (M.D.D.); Tel.: +39-32-0487-6058 (M.C.)
| |
Collapse
|