1
|
Kong C, Duan C, Zhang Y, Wang Y, Yan Z, Zhou S. Non-starch polysaccharides from kidney beans: comprehensive insight into their extraction, structure and physicochemical and nutritional properties. Food Funct 2024; 15:62-78. [PMID: 38063031 DOI: 10.1039/d3fo03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Kidney beans (Phaseolus vulgaris L.) are an important legume source of carbohydrates, proteins, and bioactive molecules and thus have attracted increasing attention for their high nutritional value and sustainability. Non-starch polysaccharides (NSPs) in kidney beans account for a high proportion and have a significant impact on their biological functions. Herein, we critically update the information on kidney bean varieties and factors that influence the physicochemical properties of carbohydrates, proteins, and phenolic compounds. Furthermore, their extraction methods, structural characteristics, and health regulatory effects, such as the regulation of intestinal health and anti-obesity and anti-diabetic effects, are also summarized. This review will provide suggestions for further investigation of the structure of kidney bean NSPs, their relationships with biological functions, and the development of NSPs as novel plant carbohydrate resources.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yiying Wang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China.
| | - Sumei Zhou
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
Peddio S, Lorrai S, Padiglia A, Cannea FB, Dettori T, Cristiglio V, Genovese L, Zucca P, Rescigno A. Biochemical and Phylogenetic Analysis of Italian Phaseolus vulgaris Cultivars as Sources of α-Amylase and α-Glucosidase Inhibitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2918. [PMID: 37631130 PMCID: PMC10457751 DOI: 10.3390/plants12162918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Phaseolus vulgaris α-amylase inhibitor (α-AI) is a protein that has recently gained commercial interest, as it inhibits mammalian α-amylase activity, reducing the absorption of dietary carbohydrates. Numerous studies have reported the efficacy of preparations based on this protein on the control of glycaemic peaks in type-2 diabetes patients and in overweight subjects. A positive influence on microbiota regulation has also been described. In this work, ten insufficiently studied Italian P. vulgaris cultivars were screened for α-amylase- and α-glucosidase-inhibiting activity, as well as for the absence of antinutritional compounds, such as phytohemagglutinin (PHA). All the cultivars presented α-glucosidase-inhibitor activity, while α-AI was missing in two of them. Only the Nieddone cultivar (ACC177) had no haemagglutination activity. In addition, the partial nucleotide sequence of the α-AI gene was identified with the degenerate hybrid oligonucleotide primer (CODEHOP) strategy to identify genetic variability, possibly linked to functional α-AI differences, expression of the α-AI gene, and phylogenetic relationships. Molecular studies showed that α-AI was expressed in all the cultivars, and a close similarity between the Pisu Grogu and Fasolu cultivars' α-AI and α-AI-4 isoform emerged from the comparison of the partially reconstructed primary structures. Moreover, mechanistic models revealed the interaction network that connects α-AI with the α-amylase enzyme characterized by two interaction hotspots (Asp38 and Tyr186), providing some insights for the analysis of the α-AI primary structure from the different cultivars, particularly regarding the structure-activity relationship. This study can broaden the knowledge about this class of proteins, fuelling the valorisation of Italian agronomic biodiversity through the development of commercial preparations from legume cultivars.
Collapse
Affiliation(s)
- Stefania Peddio
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | - Sonia Lorrai
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | - Alessandra Padiglia
- Department of Life and Environmental Sciences (DiSVA), University Campus, Monserrato, 09042 Cagliari, Italy; (A.P.); (F.B.C.)
| | - Faustina B. Cannea
- Department of Life and Environmental Sciences (DiSVA), University Campus, Monserrato, 09042 Cagliari, Italy; (A.P.); (F.B.C.)
| | - Tinuccia Dettori
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | | | - Luigi Genovese
- CEA/MEM/L-Sim, University Grenoble Alpes, 38044 Grenoble, France;
| | - Paolo Zucca
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | - Antonio Rescigno
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| |
Collapse
|
3
|
Zhu Y, Li J, Feng X, Shi Z, Yao Y, Shen R. Structural characterization of two polysaccharides from white common bean (
Phaseolus vulgaris
L.) and the application in microencapsulation of probiotics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingying Zhu
- College of Food and Bioengineering Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou 450002 China
| | - Jiayao Li
- College of Food and Bioengineering Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou 450002 China
| | - Xuewei Feng
- College of Food and Bioengineering Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou 450002 China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081 China
| | - Zhenxing Shi
- School of Food Science and Technology Henan University of Technology Zhengzhou 450002 China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081 China
| | - Ruiling Shen
- College of Food and Bioengineering Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety Zhengzhou 450002 China
| |
Collapse
|
4
|
Shi Z, Blecker C, Richel A, Wei Z, Chen J, Ren G, Guo D, Yao Y, Haubruge E. Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|