1
|
Mari A, Kekes T, Boukouvalas C, Krokida M. Integrating Life Cycle Assessment in Innovative Berry Processing with Edible Coating and Osmotic Dehydration. Foods 2025; 14:1167. [PMID: 40238293 PMCID: PMC11988440 DOI: 10.3390/foods14071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
This study presents a Life Cycle Assessment (LCA) of a berry production system using osmotic dehydration and edible coating to extend the shelf life and improve the nutritional value. The goal is to evaluate environmental impacts, identify hotspots, and propose improvements. Osmotic dehydration is the main contributor to environmental impact, particularly due to the energy and resources required by apple juice as the osmotic agent. It contributes up to 0.64 kg CO2 eq. per kg of blueberries, 1.36 kg CO2 eq. per kg of raspberries, and 0.66 kg CO2 eq. per kg of strawberries. The edible coating, however, has minimal environmental impact due to its low energy consumption and biodegradable materials. Packaging has a lower carbon footprint but contributes more to fossil fuel depletion and human toxicity. Raspberries show the highest human health impact (3.5 × 10-6 DALY/kg) and ecosystem impact (9.5 × 10-8 species.yr/kg), followed by strawberries (1.78 × 10-6 DALY/kg, 4.97 × 10-8 species.yr/kg) and blueberries (1.7 × 10-6 DALY/kg, 5.1 × 10-8 species.yr/kg), highlighting the greater environmental and health costs of raspberries. Despite the environmental burden of osmotic dehydration, it offers economic benefits by extending the shelf life, reducing losses, improving supply chain efficiency, and enhancing product quality, which leads to higher prices and profit margins. The study concludes that, while the environmental impacts of osmotic dehydration should be optimized, its economic and logistical benefits make it a promising preservation solution. Further research into eco-friendly practices is recommended to reduce ecological costs while maintaining commercial advantages.
Collapse
Affiliation(s)
- Alexandra Mari
- School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | | | | | | |
Collapse
|
2
|
Shi P, Xie Y, Mei J, Xie J. Effects of microemulsions of Ocimum basilicum essential oil on the cooking quality of snakehead (Channa argus) under different impregnation methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2722-2730. [PMID: 39562757 DOI: 10.1002/jsfa.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND This study investigates the effect of microemulsions of 0.8% Ocimum basilicum essential oil (MOBO) on the cooking quality and shelf life of snakehead fillets using different impregnation methods (air environment treatment, vacuum impregnation, ultrasonic impregnation and vacuum impregnation with ultrasonic-assisted). Basil essential oil, recognized for its antimicrobial and antioxidant properties, is utilized in a microemulsion form to enhance its efficacy and application in food preservation. RESULTS The findings of the study demonstrated that MOBO markedly enhanced the cooking quality, flavor and overall acceptability of snakehead fillets. The incidence of microbial growth was markedly diminished in the MOBO-treated fillets in comparison to the control group. On day 9, a reduction in the total viable count of a minimum of 1.7 lg CFU/g was observed in comparison to the control group. The treated group exhibited an extended shelf life, with an increase of 3-9 days in comparison to the control group. However, there was a higher cooking weight loss in the treated group compared to the control group. This is from the findings regarding moisture content. The digestibility of the MOBO-treated fillets was enhanced by up to 4.13% in comparison to the control group, while the particle size was reduced by up to 40 nm. MOBO reduced the production of bitter amino acids and thiobarbituric acid. CONCLUSION Incorporating MOBO in the marination process effectively enhances the cooking quality and extends the shelf life of snakehead fillets. These results indicate the potential of basil essential oil microemulsion as a natural and efficient food preservation method, offering significant benefits for the food industry in terms of product quality and safety improvement. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
3
|
Kaur J, Kaur S, Assouguem A, El Kadili S, Ullah R, Iqbal Z, Nanda V. Enhanced osmotic dehydration of watermelon rind using honey-sucrose solutions: A study on pre-treatment efficacy and mass transfer kinetics. Open Life Sci 2024; 19:20220946. [PMID: 39329022 PMCID: PMC11426385 DOI: 10.1515/biol-2022-0946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigates the osmotic dehydration process of watermelon rind using a solution composed of honey and sucrose. The impact of the ratio of rind-to-solution and temperature on the process is illustrated. Pre-treatments such as blanching, microwaves, and ultrasonication were utilized. Ultrasonication reduces the time needed for osmosis in a sample, resulting in increased fluid loss and solute uptake; therefore, it was selected as the method to investigate the kinetics and modelling of mass transfer. The effective diffusivities for water loss (ranging from 3.02 × 10-5 to 4.21 × 10-4 m2 s-1) and solid gain (ranging from 1.94 × 10-6 to 3.21 × 10-6 m2 s-1) were shown to increase with process variables such as temperature and the rind-to-solution ratio. The activation energy decreased as the process temperature increased, ranging from 3.723 to 0.928 kJ mol-1 for water loss and from 1.733 to 0.903 kJ mol-1 for solid gain, respectively. The sample treated with microwaves exhibited the maximum dehydration coefficient, rendering it appropriate for producing dehydrated products. Five empirical models were utilized, with the power law model (R 2 = 0.983) and the Magee model (R 2 = 0.950) being the most suitable for water loss data and solid gain, respectively.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Sangrur, Punjab, India
- Department of Agricultural and Food Engineering. Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, Fez, P.O. Box 2202, Morocco
- Department of Plant Protection and Environment, National School of Agriculture, Meknes, Morocco
| | - Sara El Kadili
- Department of Animal production, Nationale d'Agriculture de Meknès, Meknes, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy College École of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Sangrur, Punjab, India
| |
Collapse
|
4
|
Mari A, Parisouli DN, Krokida M. Exploring Osmotic Dehydration for Food Preservation: Methods, Modelling, and Modern Applications. Foods 2024; 13:2783. [PMID: 39272548 PMCID: PMC11394940 DOI: 10.3390/foods13172783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study summarizes the most recent findings on osmotic dehydration, a crucial step in food preservation. The many benefits of osmotic dehydration are listed, including longer shelf life and preserved nutritional value. Mass transfer dynamics, which are critical to understanding osmotic dehydration, are explored alongside mathematical models essential for comprehending this process. The effect of osmotic agents and process parameters on efficacy, such as temperature, agitation and osmotic agent concentration, is closely examined. Pre-treatment techniques are emphasized in order to improve process effectiveness and product quality. The increasing demand for sustainability is a critical factor driving research into eco-friendly osmotic agents, waste valorization, and energy-efficient methods. The review also provides practical insights into process optimization and discusses the energy consumption and viability of osmotic dehydration compared to other drying methods. Future applications and improvements are highlighted, making it an invaluable tool for the food industry.
Collapse
Affiliation(s)
- Alexandra Mari
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | | | - Magdalini Krokida
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
5
|
Trusinska M, Rybak K, Drudi F, Tylewicz U, Nowacka M. Combined effect of ultrasound and vacuum impregnation for the modification of apple tissue enriched with aloe vera juice. ULTRASONICS SONOCHEMISTRY 2024; 104:106812. [PMID: 38394825 PMCID: PMC10906508 DOI: 10.1016/j.ultsonch.2024.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The aim of the work was to investigate how ultrasonic (US) treatment impacts on the physical and chemical properties of vacuum-impregnated apples. Apple slices were subjected to vacuum impregnation (VI) in an Aloe vera juice solution without additional treatments, serving as the reference material. Alternatively, ultrasound (US) treatments, at frequencies of 25 or 45 kHz, and durations of 10, 20, or 30 min, were employed as a pre-treatments before the VI process. The use of US processing enabled a significant increase in the efficiency of VI, without influencing in a significant way the color of the VI samples. The VI process led to a reduction in the content of bioactive compounds, in particular vitamin C and TPC decreased by 34 and 32 %, respectively. The use of US as a pre-treatment, in particular at 45 kHz for 20 or 30 min, led to a better preservation of these compounds (unchanged values for vitamin C and decrease by 23-26 % for TPC in comparison to the fresh samples). Through cluster analysis encompassing all assessed properties, it was evident that US treatment was beneficial for the processing, however the application of appropriate parameters of US treatment (frequency and time) had an impact on achieving similar quality to VI samples. The ultrasound treatment before vacuum impregnation may be suitable, however, the specific processing parameters should be defined for the obtained high quality of the final product.
Collapse
Affiliation(s)
- Magdalena Trusinska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland
| | - Federico Drudi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena 47521, Italy
| | - Urszula Tylewicz
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, Cesena 47521, Italy; Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, Cesena 47521, Italy
| | - Malgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159c, Warsaw 02-776, Poland.
| |
Collapse
|
6
|
Hossain MA, Talukder S, Uz Zaman A, Sarkar A, Yasin M, Biswas R. Effective drying processes for Taikor (Garcinia pedunculata Roxb.) fruit by ultrasound-assisted osmotic pretreatment: Analysis of quality and kinetic models. ULTRASONICS SONOCHEMISTRY 2024; 103:106784. [PMID: 38295744 PMCID: PMC10845064 DOI: 10.1016/j.ultsonch.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The present study aimed to analyze and establish an effective combination of ultrasound and immersion pretreatment processes for drying Taikor (Garcinia pendunculata Roxb.) fruits. Taikorslices were first immersed in 10 % sucrose, fructose, and glucose solution. Then, the immersed slices were treated in an ultrasonic bath at 30 °C for 10, 20, and 30 min. Drying operations were carried out at 50, 60, and 70 °C, with a fixed relative humidity of 30 %. The Page, Newton, Henderson and Pabis, and Weibull distribution models were fitted to the obtained drying data to determine the best kinetic model that effectively describes the drying properties ofTaikor. After drying operations, changes in quality parameters, e.g., β-carotene, vitamin C, B vitamins, color, antioxidant activities, and microbial loads, were measured to obtain the best drying temperature and the most effective pretreatment combination with minimum loss of nutrients of the sample. Among different kinetic models, both Page and Weibull distribution models showed the best R2 values of 0.9867 and 0.9366, respectively. The chemical properties were preserved to the greatest extent possible by drying at 50 °C with glucose pretreatment. The color parameters were better preserved by fructose pretreatment. Sonication time also had profound effect on the quality parameters of dried Taikor slices. However, higher temperature drying required a shorter time for drying and exhibited better performance in microbial load reduction. This study's findings will help to establish an effective drying condition forGarcinia pedunculatafruits.
Collapse
Affiliation(s)
- Mohammad Afzal Hossain
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Sudipta Talukder
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Aftab Uz Zaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Animesh Sarkar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Yasin
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Rahul Biswas
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
7
|
Liu T, Zheng J, Du J, He G. Food Processing and Nutrition Strategies for Improving the Health of Elderly People with Dysphagia: A Review of Recent Developments. Foods 2024; 13:215. [PMID: 38254516 PMCID: PMC10814519 DOI: 10.3390/foods13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Dysphagia, or swallowing difficulty, is a common morbidity affecting 10% to 33% of the elderly population. Individuals with dysphagia can experience appetite, reduction, weight loss, and malnutrition as well as even aspiration, dehydration, and long-term healthcare issues. However, current therapies to treat dysphagia can routinely cause discomfort and pain to patients. To prevent these risks, a non-traumatic and effective treatment of diet modification for safe chewing and swallowing is urgently needed for the elderly. This review mainly summarizes the chewing and swallowing changes in the elderly, as well as important risk factors and potential consequences of dysphagia. In addition, three texture-modified food processing strategies to prepare special foods for the aged, as well as the current statuses and future trends of such foods, are discussed. Nonthermal food technologies, gelation, and 3D printing techniques have been developed to prepare soft, moist, and palatable texture-modified foods for chewing and swallowing safety in elderly individuals. In addition, flavor enhancement and nutrition enrichment are also considered to compensate for the loss of sensory experience and nutrients. Given the trend of population aging, multidisciplinary cooperation for dysphagia management should be a top priority.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Jianheng Zheng
- Nutrilite Health Institute, Shanghai 200032, China; (J.Z.); (J.D.)
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200032, China; (J.Z.); (J.D.)
| | - Gengsheng He
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China;
| |
Collapse
|
8
|
Xing Y, Ma Q, Wang K, Dong X, Wang S, He P, Wang J, Xu H. Non-thermal treatments of strawberry pulp: The relationship between quality attributes and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106508. [PMID: 37442055 PMCID: PMC10362351 DOI: 10.1016/j.ultsonch.2023.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The relationship between quality attributes and microstructure in strawberry pulp after pasteurization (PS), ultrasound (US), electron beam irradiation (EB), and high pressure (HP) treatments was investigated. The results showed that US treatment decreased the viscosity to the lowest by 80.15% and increased the a* value, cloudy stability, and contents of titratable acid, total soluble solid, organic acids, total phenols, total flavonoids, and total anthocyanins (TAC), as well as its antioxidant capacity, due to the decrease in particle size, the destruction of microstructure, and the release of intracellular compounds. US and EB treatments could maintain the volatile compounds. The greatest deterioration in TAC and volatile compound content was found in the pulp treated with PS and HP treatments. HP treatment was beneficial to the enhancement of apparent viscosity, organic acids, and soluble sugar. These results provided insights into the enhancement of quality attributes in strawberry pulp due to the microstructure change.
Collapse
Affiliation(s)
- Ying Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Life Science, Yuncheng University, Yuncheng, Shanxi 044000, China
| | - Qiudi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaobo Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - ShuangShuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyun He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Pandiselvam R, Mitharwal S, Rani P, Shanker MA, Kumar A, Aslam R, Barut YT, Kothakota A, Rustagi S, Bhati D, Siddiqui SA, Siddiqui MW, Ramniwas S, Aliyeva A, Mousavi Khaneghah A. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr Res Food Sci 2023; 6:100529. [PMID: 37377494 PMCID: PMC10290997 DOI: 10.1016/j.crfs.2023.100529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The color of any food is influenced by several factors, such as food attributes (presence of pigments, maturity, and variety), processing methods, packaging, and storage conditions. Thus, measuring the color profile of food can be used to control the quality of food and examine the changes in chemical composition. With the advent of non-thermal processing techniques and their growing significance in the industry, there is a demand to understand the effects of these technologies on various quality attributes, including color. This paper reviews the effects of novel, non-thermal processing technologies on the color attributes of processed food and the implications on consumer acceptability. The recent developments in this context and a discussion on color systems and various color measurement techniques are also included. The novel non-thermal techniques, including high-pressure processing, pulsed electric field, ultrasonication, and irradiation which employ low processing temperatures for a short period, have been found effective. Since food products are processed at ambient temperature by subjecting them to non-thermal treatment for a very short time, there is no possibility of damage to heat-sensitive nutrient components in the food, any deterioration in the texture of the food, and any toxic compounds in the food due to heat. These techniques not only yield higher nutritional quality but are also observed to maintain better color attributes. However, suppose foods are exposed to prolonged exposure or processed at a higher intensity. In that case, these non-thermal technologies can cause undesirable changes in food, such as oxidation of lipids and loss of color and flavor. Developing equipment for batch food processing using non-thermal technology, understanding the appropriate mechanisms, developing processing standards using non-thermal processes, and clarifying consumer myths and misconceptions about these technologies will help promote non-thermal technologies in the food industry.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, India
| | - Poonam Rani
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - M. Anjaly Shanker
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Amit Kumar
- Food Chemistry & Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Yeliz Tekgül Barut
- Food Processing Department, Köşk Vocational School, Aydın Adnan Menderes University, Aydın, 09100, Turkey
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dolly Bhati
- Department of Food Bioscienes, Teagasc, Agriculture and Food Development Authority, D15 DY05, Dublin, Ireland
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | - Mohammed Wasim Siddiqui
- Department Food Science and Postharvest Technology, Bihar Agricultural University, Sabour, 813210, Bhagalpur, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
10
|
Kumar Dash K, Sundarsingh A, BhagyaRaj GVS, Kumar Pandey V, Kovács B, Mukarram SA. Modelling of ultrasonic assisted osmotic dehydration of cape gooseberry using adaptive neuro-fuzzy inference system (ANFIS). ULTRASONICS SONOCHEMISTRY 2023; 96:106425. [PMID: 37141660 PMCID: PMC10176255 DOI: 10.1016/j.ultsonch.2023.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
In the present investigation, the cape gooseberry (Physalis peruviana L.) was preserved by the application of osmotic dehydration (sugar solution) with ultrasonication. The experiments were planned based on central composite circumscribed design with four independent variables and four dependent variables, which yielded 30 experimental runs. The four independent variables used were ultrasonication power (XP) with a range of 100-500 W, immersion time (XT) in the range of 30-55 min, solvent concentration (XC) of 45-65 % and solid to solvent ratio (XS) with range 1:6-1:14 w/w. The effect of these process parameters on the responses weight loss (YW), solid gain (YS), change in color (YC) and water activity (YA) of ultrasound assisted osmotic dehydration (UOD) cape gooseberry was studied by using response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). The second order polynomial equation successfully modeled the data with an average coefficient of determination (R2) was found to be 0.964 for RSM. While for the ANFIS modeling, Gaussian type membership function (MF) and linear type MF was used for the input and output, respectively. The ANFIS model formed after 500 epochs and trained by hybrid model was found to have average R2 value of 0.998. On comparing the R2 value the ANFIS model found to be superior over RSM in predicting the responses of the UOD cape gooseberry process. So, the ANFIS was integrated with a genetic algorithm (GA) for optimization with the aim of maximum YW and minimum YS, YC and YA. Depending on the higher fitness value of 3.4, the integrated ANFIS-GA picked the ideal combination of independent variables and was found to be XP of 282.434 W, XT of 50.280 min, XC of 55.836 % and XS of 9.250 w/w. The predicted and experimental values of response at optimum condition predicted by integrated ANN-GA were in close agreement, which was evident by the relative deviation less than 7%.
Collapse
Affiliation(s)
- Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal 732141, India.
| | - Anjelina Sundarsingh
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal 732141, India
| | - G V S BhagyaRaj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal 732141, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
11
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
12
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
13
|
Bhagya Raj GVS, Dash KK. Ultrasound Assisted Osmotic Dehydration of Dragon Fruit Slices: Modelling and Optimization Using Integrated Artificial Neural Networks and Genetic Algorithms. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. V. S. Bhagya Raj
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| | - Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| |
Collapse
|
14
|
Umaña M, Calahorro M, Eim V, Rosselló C, Simal S. Measurement of microstructural changes promoted by ultrasound application on plant materials with different porosity. ULTRASONICS SONOCHEMISTRY 2022; 88:106087. [PMID: 35785623 PMCID: PMC9256647 DOI: 10.1016/j.ultsonch.2022.106087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 05/26/2023]
Abstract
This research investigated the effects of ultrasound application (192 ± 6 W/L) on the microstructure of vegetables/fruits with different porosities, cell sizes and patterns (eggplants, beetroots, and apples), submitted to an immersion treatment in different liquids: distilled water, citric acid (1% w/v), and the vegetable/fruit juice, at 25 °C during 5 min. The ultrasound application did not significantly (p > 0.05) affect the size of the cells of the most porous material (eggplant) compared to the samples immersed without ultrasound assistance. The apple samples (with a middle-high porosity and the largest cells) were the most affected by ultrasound application. The median cell areas of samples treated with ultrasound in water and apple juice were 26 and 20% larger than those of samples treated without ultrasound, mainly because of cell wall disruption which caused the cells to merge into bigger clusters, but no effect was observed with the citric acid. Ultrasound application significantly (p < 0.05) increased the median cell area of the less porous raw matter (beetroot) only when the treatment was carried out in the vegetable juice (cells were 26% larger after treatment assisted with ultrasound than without it). Thus, the effects of ultrasound differ in materials with initially different characteristics.
Collapse
Affiliation(s)
- Mónica Umaña
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Marina Calahorro
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Valeria Eim
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carmen Rosselló
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Susana Simal
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
15
|
Kaveh M, Taghinezhad E, Witrowa‐Rajchert D, Imanian K, Khalife E, Nowacka M. Use of ultrasound pre‐treatment before microwave drying of kiwifruits – an optimization approach with response surface methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Kaveh
- Department of Petroleum Engineering College of Engineering Knowledge University, 44001 Erbil Iraq
| | - Ebrahim Taghinezhad
- Department of Agricultural Technology Engineering Moghan College of Agriculture and Natural Resources University of Mohaghegh Ardabili, Ardabil 56199‐11367 Ardabil Iran
| | - Dorota Witrowa‐Rajchert
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences‐SGGW, 02‐776 Warsaw Poland
| | - Kamal Imanian
- Agricultural Engineering Research Department West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO Urmia Iran
| | - Esmail Khalife
- Department of Civil Engineering Cihan University‐ Erbil Kurdistan Region Iraq
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management Institute of Food Sciences Warsaw University of Life Sciences‐SGGW, 02‐776 Warsaw Poland
| |
Collapse
|
16
|
Zhang Z, Yu J, Cheng P, Wang S, Hang F, Li K, Xie C, Shi C. Effect of Different Process Parameters and Ultrasonic Treatment During Solid Osmotic Dehydration of Jasmine for Extraction of Flavoured Syrup on the Mass Transfer Kinetics and Quality Attributes. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Maldonado M, González Pacheco J. Mathematical modelling of mass transfer phenomena for sucrose and lactitol molecules during osmotic dehydration of cherries. Heliyon 2022; 8:e08788. [PMID: 35097231 PMCID: PMC8783122 DOI: 10.1016/j.heliyon.2022.e08788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/18/2021] [Accepted: 01/14/2022] [Indexed: 10/27/2022] Open
|
18
|
Dadan M, Tylewicz U, Tappi S, Rybak K, Witrowa-Rajchert D, Dalla Rosa M. Effect of Ultrasound, Steaming, and Dipping on Bioactive Compound Contents and Antioxidant Capacity of Basil and Parsley. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/141430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Selected Quality Parameters of Air-Dried Apples Pretreated by High Pressure, Ultrasounds and Pulsed Electric Field-A Comparison Study. Foods 2021; 10:foods10081943. [PMID: 34441719 PMCID: PMC8393259 DOI: 10.3390/foods10081943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
The aim of this work was to compare selected physicochemical properties of air dried ‘Golden Delicious’ apples, pretreated either by high-pressure processing (HPP), ultrasound (US) or pulsed electric field (PEF). Following parameters of pretreatment were used: HPP–400 MPa for 15 min, US–21 kHz, 180 W for 45 min, PEF–1 kV/cm, 3.5 kJ/kg. The quality of materials was evaluated by their rehydration properties, hygroscopicity, color and total phenolic content. To compare the effectiveness of the utilized methods, determined properties were expressed as relative comparison values against the reference sample obtained without any pretreatment in the same conditions. The performed research demonstrated that properties can be shaped by the application of proper pretreatment methods. For instance, PEF was shown to be the best method for improving water uptake during rehydration, whereas HPP was the most effective in decreasing hygroscopic properties in comparison with untreated dried apples. Among the investigated methods, HPP resulted in the deepest browning and thus total color difference, while the effects of US and PEF were comparable. For all pretreated dried apples, the total phenolic content was lower when compared with reference material, though the smallest drop was found in sonicated samples.
Collapse
|
20
|
Effect of Pretreatments on Convective and Infrared Drying Kinetics, Energy Consumption and Quality of Terebinth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study is focused on the influence of convective drying (50, 60, and 70 °C) and infrared (IR) power (250, 500, and 750 W) on the drying kinetics, the specific energy consumption of terebinth drying as well as quality and bioactive compounds upon various pretreatments such as ultrasound (US), blanching (BL), and microwave (MW). Compared to convective drying, IR drying decreased more the drying time and energy consumption (SEC). Application of higher IR powers and air temperatures accelerated the drying process at lower energy consumption (SEC) and higher energy efficiency and moisture diffusion. Terebinth dried by a convective dryer at 60 °C with US pretreatment showed a better color compared to other samples. It also exhibited the polyphenol and flavonoid content of 145.35 mg GAE/g d.m. and 49.24 mg QE/g d.m., respectively, with color variations of 14.25 and a rehydration rate of 3.17. The proposed pretreatment methods significantly reduced the drying time and energy consumption, and from the other side it increased energy efficiency, bioactive compounds, and quality of the dried samples (p < 0.01). Among the different pretreatments used, microwave pretreatment led to the best results in terms of the drying time and SEC, and energy efficiency. US pretreatment showed the best results in terms of preserving the bioactive compounds and the general appearance of the terebinth.
Collapse
|
21
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
22
|
Janiszewska-Turak E, Rybak K, Grzybowska E, Konopka E, Witrowa-Rajchert D. The Influence of Different Pretreatment Methods on Color and Pigment Change in Beetroot Products. Molecules 2021; 26:3683. [PMID: 34208715 PMCID: PMC8235720 DOI: 10.3390/molecules26123683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable processing pomace contains valuable substances such as natural colors that can be reused as functional ingredients. Due to a large amount of water, they are an unstable material. The aim of our research was to assess how the pretreatment method (thermal or nonthermal) affects the properties of powders obtained from beet juice and pomace after the freeze-drying process. The raw material was steamed or sonicated for 10 or 15 min, and then squeezed into juice and pomace. Both squeezed products were freeze-dried. The content of dry substance; L*, a*, and b* color parameters; and the content of betalain pigments were analyzed. Pretreatments increased the proportion of red and yellow in the juices. Steam and ultrasound caused a significant reduction in parameter b* in the dried pomace. A significant increase in betanin in lyophilizates was observed after pretreatment with ultrasound and steam for 15 min. As a result of all experiments, dried juices and pomaces can also be used as a colorant source. However, there is higher potential with pomaces due to their additional internal substances as well as better storage properties. After a few hours, juice was sticky and not ready to use.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (E.G.); (E.K.); (D.W.-R.)
| | | | | | | | | |
Collapse
|
23
|
Lycopene degradation and color characteristics of fresh and processed tomatoes under the different drying methods: a comparative study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Energy and Quality Aspects of Freeze-Drying Preceded by Traditional and Novel Pre-Treatment Methods as Exemplified by Red Bell Pepper. SUSTAINABILITY 2021. [DOI: 10.3390/su13042035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Freeze-drying is one of the most expensive and most energy intensive processes applied in food technology. Therefore, there have been significant efforts to reduce the freeze-drying time and decrease its energy consumption. The aim of this work was to analyze the effect of pulsed electric field (PEF), ultrasound (US), and hybrid treatment (PEF-US) and compare them with the effect of blanching (BL) on the freeze-drying kinetics, energy consumption, greenhouse gasses emission, and physical quality of the product. The freeze-drying process was applied to red bell peppers after pretreatment operations. Results showed that application of BL, PEF, US, or PEF-US reduces freeze-drying time and decreases energy consumption. Among the tested methods, the combination of PEF performed at 1 kJ/kg and US was the most effective in reduction of greenhouse gas emission. BL samples exhibited the highest porosity, but from a statistical point of view, most of the PEF-US treated materials did not differ from it. The smallest color changes were noted for US pre-treated bell peppers (ΔE = 9.4), whereas BL, PEF, and PEF-US material was characterized by ΔE of 15.2–28.5. Performed research indicates the application of pre-treatment may improve the sustainability of freeze-drying process and quality of freeze-dried bell pepper.
Collapse
|