1
|
Shang S, Shi Y, Zhang Y, Liu M, Zhang H, Wang P, Zhuang L. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. J Zhejiang Univ Sci B 2024; 25:914-940. [PMID: 39420525 PMCID: PMC11494159 DOI: 10.1631/jzus.b2400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Collapse
Affiliation(s)
- Shunuo Shang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yajie Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Wang Z, Song X, Chen L, Nan J, Sun Y, Pang M, Zhang K, Liu X, Ming D. Research progress of epileptic seizure prediction methods based on EEG. Cogn Neurodyn 2024; 18:2731-2750. [PMID: 39555266 PMCID: PMC11564528 DOI: 10.1007/s11571-024-10109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 11/19/2024] Open
Abstract
At present, at least 30% of refractory epilepsy patients in the world cannot be effectively controlled and treated. The suddenness and unpredictability of seizures greatly affect the physical and mental health and even the life safety of patients, and the realization of early prediction of seizures and the adoption of interventions are of great significance to the improvement of patients' quality of life. In this paper, we firstly introduce the design process of EEG-based seizure prediction methods, introduce several databases commonly used in the research, and summarize the commonly used methods in pre-processing, feature extraction, classification and identification, and post-processing. Then, based on scalp EEG and intracranial EEG respectively, we reviewed the current status of epileptic seizure prediction research from five commonly used feature analysis methods, and make a comprehensive evaluation of both. Finally, this paper describes the reasons why the current algorithms cannot be applied to the clinic, summarizes their limitations, and gives corresponding suggestions, aiming to provide improvement directions for subsequent research. In addition, deep learning algorithms have emerged in recent years, and this paper also compares the advantages and disadvantages of deep learning algorithms with traditional machine learning methods, in the hope of providing researchers with new technologies and new ideas and making significant breakthroughs in the field of epileptic seizure prediction.
Collapse
Affiliation(s)
- Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Xiaoxin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Jinxiang Nan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Yulin Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| |
Collapse
|
3
|
Jemal I, Abou-Abbas L, Henni K, Mitiche A, Mezghani N. Domain adaptation for EEG-based, cross-subject epileptic seizure prediction. Front Neuroinform 2024; 18:1303380. [PMID: 38371495 PMCID: PMC10869477 DOI: 10.3389/fninf.2024.1303380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
The ability to predict the occurrence of an epileptic seizure is a safeguard against patient injury and health complications. However, a major challenge in seizure prediction arises from the significant variability observed in patient data. Common patient-specific approaches, which apply to each patient independently, often perform poorly for other patients due to the data variability. The aim of this study is to propose deep learning models which can handle this variability and generalize across various patients. This study addresses this challenge by introducing a novel cross-subject and multi-subject prediction models. Multiple-subject modeling broadens the scope of patient-specific modeling to account for the data from a dedicated ensemble of patients, thereby providing some useful, though relatively modest, level of generalization. The basic neural network architecture of this model is then adapted to cross-subject prediction, thereby providing a broader, more realistic, context of application. For accrued performance, and generalization ability, cross-subject modeling is enhanced by domain adaptation. Experimental evaluation using the publicly available CHB-MIT and SIENA data datasets shows that our multiple-subject model achieved better performance compared to existing works. However, the cross-subject faces challenges when applied to different patients. Finally, through investigating three domain adaptation methods, the model accuracy has been notably improved by 10.30% and 7.4% for the CHB-MIT and SIENA datasets, respectively.
Collapse
Affiliation(s)
- Imene Jemal
- Centre EMT, Institut National de la Recherche Scientifique, Montréal, QC, Canada
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| | - Lina Abou-Abbas
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| | - Khadidja Henni
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| | - Amar Mitiche
- Centre EMT, Institut National de la Recherche Scientifique, Montréal, QC, Canada
| | - Neila Mezghani
- Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada
- Laboratoire de Recherche en Imagerie et Orthopédie, Centre de recherche du CHUM, Montréal, QC, Canada
| |
Collapse
|
4
|
Palanisamy P, Urooj S, Arunachalam R, Lay-Ekuakille A. A Novel Prognostic Model Using Chaotic CNN with Hybridized Spoofing for Enhancing Diagnostic Accuracy in Epileptic Seizure Prediction. Diagnostics (Basel) 2023; 13:3382. [PMID: 37958278 PMCID: PMC10650532 DOI: 10.3390/diagnostics13213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Epileptic seizure detection has undergone progressive advancements since its conception in the 1970s. From proof-of-concept experiments in the latter part of that decade, it has now become a vibrant area of clinical and laboratory research. In an effort to bring this technology closer to practical application in human patients, this study introduces a customized approach to selecting electroencephalogram (EEG) features and electrode positions for seizure prediction. The focus is on identifying precursors that occur within 10 min of the onset of abnormal electrical activity during a seizure. However, there are security concerns related to safeguarding patient EEG recordings against unauthorized access and network-based attacks. Therefore, there is an urgent need for an efficient prediction and classification method for encrypted EEG data. This paper presents an effective system for analyzing and recognizing encrypted EEG information using Arnold transform algorithms, chaotic mapping, and convolutional neural networks (CNNs). In this system, the EEG time series from each channel is converted into a 2D spectrogram image, which is then encrypted using chaotic algorithms. The encrypted data is subsequently processed by CNNs coupled with transfer learning (TL) frameworks. To optimize the fusion parameters of the ensemble learning classifiers, a hybridized spoofing optimization method is developed by combining the characteristics of corvid and gregarious-seeking agents. The evaluation of the model's effectiveness yielded the following results: 98.9 ± 0.3% accuracy, 98.2 ± 0.7% sensitivity, 98.6 ± 0.6% specificity, 98.6 ± 0.6% precision, and an F1 measure of 98.9 ± 0.6%. When compared with other state-of-the-art techniques applied to the same dataset, this novel strategy demonstrated one of the most effective seizure detection systems, as evidenced by these results.
Collapse
Affiliation(s)
- Preethi Palanisamy
- Department of Computer Science and Engineering, Kongunadu College of Engineering and Technology, Trichy 621215, India
| | - Shabana Urooj
- Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rajesh Arunachalam
- Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India;
| | - Aime Lay-Ekuakille
- Dipartimento d’Ingegneria dell’Innovazione (DII) (Department of Innovation Engineering), Universita del Salento (University of Salento), Via Monteroni, Ed. “Corpo O”, 73100 Leece, Italy
| |
Collapse
|
5
|
Patient-specific method for predicting epileptic seizures based on DRSN-GRU. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
EEG Oscillatory Power and Complexity for Epileptic Seizure Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing the reduction of seizure risk and complications. In general, seizure detection is done manually in hospitals and involves time-consuming visual inspection and interpretation by experts of electroencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of band-limited spectral power and signal complexity in order to discriminate between seizure and seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal feature representation. Classification of seizure and seizure-free data was performed by prevalent potent classifiers. Substantial comparative performance evaluation experiments were performed on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database. Based on statistically validated criteria, results show the efficiency of band-limited spectral power and signal complexity when using random forest and gradient-boosting decision tree classifiers (95% of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support the use of these automatic classification schemes to assist the practicing neurologist interpret EEG records more accurately and without tedious visual inspection.
Collapse
|