1
|
Hahm E, Jo A, Kang E, Yoo K, Shin M, An J, Pham X, Kim H, Kang H, Kim J, Jun B. Silica Encapsulation of Hydrophobic Optical NP-Embedded Silica Particles with Trimethoxy(2-Phenylethyl)silane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2145. [PMID: 37513156 PMCID: PMC10384416 DOI: 10.3390/nano13142145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Nanoparticles (NP) with optical properties embedded silica particles have been widely used in various fields because of their unique properties. The surfaces of optical NPs have been modified with various organic ligands to maintain their unique optical properties and colloidal stability. Among the surface modification methods, silica encapsulation of optical NPs is widely used to enhance their biocompatibility and stability. However, in the case of NPs with hydrophobic ligands on the surface, the ligands that determine the optical properties of the NPs may detach from the NPs, thereby changing the optical properties during silica encapsulation. Herein, we report a generally applicable silica encapsulation method using trimethoxy(2-phenylethyl)silane (TMPS) for non-hydrophilic optical NPs, such as quantum dots (QDs) and gold NPs. This silica encapsulation method was applied to fabricate multiple silica-encapsulated QD-embedded silica NPs (SiO2@QD@SiO2 NPs; QD2) and multiple silica-encapsulated gold NP-embedded silica NPs labeled with 2-naphthalene thiol (SiO2@Au2-NT@SiO2). The fabricated silica-encapsulated NPs exhibited optical properties without significant changes in the quantum yield or Raman signal intensity.
Collapse
Affiliation(s)
- Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunji Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Xuanhung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyungmo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Bonghyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Silane functionalization of sodium montmorillonite and halloysite (HNT) nanoclays by ‘grafting to’ method to improve physico-mechanical and barrier properties of LLDPE/clay nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04281-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Arora B, Sharma S, Dutta S, Sharma A, Yadav S, Rana P, Rana P, Sharma RK. A sustainable gateway to access 1,8-dioxo-octahydroxanthene scaffolds via a surface-engineered halloysite-based magnetically responsive catalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj05509g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A covalently modified, surface-engineered Cu(ii)@DCH@CPTMS@MHNT nanocatalyst is synthesized, which showed incredible catalytic activity in accessing a library of xanthene scaffolds.
Collapse
Affiliation(s)
- Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Aditi Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - R. K. Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| |
Collapse
|