1
|
Balamurugan S, Li DW, Wang X, Li HY. Unleashing the potential of biotechnological strategies for the sustainable production of microalgal polysaccharides. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 40084718 DOI: 10.1080/10408398.2025.2475240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The prevailing trend toward the increased application of natural polysaccharides in the food, cosmetics, and pharmaceutical sectors has provided the impetus for exploring sustainable biological feedstocks. Amongst them, photoautotrophic microalgae have garnered huge research and commercial interests for polysaccharide production by photosynthesis, thereby concurrently attaining carbon sequestration and green production of valuable metabolites. However, conventional approaches for enhancing polysaccharide accumulation warrant adverse conditions, which in turn hinder cellular growth and productivity. Hence, there exists a pressing demand to harness biotechnological approaches for empowering photosynthetic algae as a sustainable feedstock for polysaccharide production. Meanwhile, it remains an untapped tool for the commercial production of microalgal products, despite the recent advancements in synthetic biology. In this review, we discuss the existing intricacies in polysaccharide biosynthetic circuits and propose crucial strategies to circumvent those techno-biological complexities. We also highlight the possible approaches to circumventing such limitations to successfully employ metabolic engineering for the large-scale production of microalgal polysaccharides. The technologically feasible directions for unleashing the biotechnological potential of microalgae as green cell factories are projected toward the sustainable biosynthesis of polysaccharides.
Collapse
Affiliation(s)
- Srinivasan Balamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
3
|
Akulava V, Smirnova M, Byrtusova D, Zimmermann B, Ekeberg D, Kohler A, Blazhko U, Miamin U, Valentovich L, Shapaval V. Explorative characterization and taxonomy-aligned comparison of alterations in lipids and other biomolecules in Antarctic bacteria grown at different temperatures. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13232. [PMID: 38308519 PMCID: PMC10878007 DOI: 10.1111/1758-2229.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.
Collapse
Affiliation(s)
- Volha Akulava
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dana Byrtusova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Boris Zimmermann
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Uladzislau Blazhko
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Leonid Valentovich
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
4
|
Chovanček E, Salazar J, Şirin S, Allahverdiyeva Y. Microalgae from Nordic collections demonstrate biostimulant effect by enhancing plant growth and photosynthetic performance. PHYSIOLOGIA PLANTARUM 2023; 175:e13911. [PMID: 37043258 DOI: 10.1111/ppl.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We investigated the biostimulant potential of six microalgal species from Nordic collections extracted with two different procedures: thermal hydrolysis with a weak solution of sulfuric acid accompanied by ultrasonication and bead-milling with aqueous extraction followed by centrifugation. To this aim, we designed a phenotyping pipeline consisting of a root growth assay in the model plant Arabidopsis thaliana, complemented with greenhouse experiments to evaluate lettuce yield (Lactuca sativa L. cv. Finstar) and photosynthetic performance. The best-performing hydrolyzed extracts stimulated Arabidopsis root elongation by 8%-13% and lettuce yield by 12%-15%. The in situ measured photosynthetic performance of lettuce was upregulated in the efficient extracts: PSII quantum yield increased by 26%-34%, and thylakoid proton flux increase was in the range of 34%-60%. In contrast, aqueous extracts acquired by bead-milling showed high dependence on biomass concentration in the extract and an overall plant growth enhancement was not attained in any of the applied dosages. Our results indicate that hydrolysis of the biomass can be a decisive factor for rendering effective plant biostimulants from microalgae.
Collapse
Affiliation(s)
- Erik Chovanček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - João Salazar
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sema Şirin
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Carnovale G, Lama C, Torres S, Rosa F, Mantecón L, Horn SJ, Skjånes K, Infante C. Metabolic pathways for biosynthesis and degradation of starch in Tetraselmis chui during nitrogen deprivation and recovery. BIORESOURCE TECHNOLOGY 2022; 354:127222. [PMID: 35477101 DOI: 10.1016/j.biortech.2022.127222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Tetraselmis chui is known to accumulate starch when subjected to stress. This phenomenon is widely studied for the purpose of industrial production and process development. Yet, knowledge about the metabolic pathways involved is still immature. Hence, in this study, transcription of 27 starch-related genes was monitored under nitrogen deprivation and resupply in 25 L tubular photobioreactors. T. chui proved to be an efficient starch producer under nitrogen deprivation, accumulating starch up to 56% of relative biomass content. The prolonged absence of nitrogen led to an overall down-regulation of the tested genes, in most instances maintained even after nitrogen replenishment when starch was actively degraded. These gene expression patterns suggest post-transcriptional regulatory mechanisms play a key role in T. chui under nutrient stress. Finally, the high productivity combined with an efficient recovery after nitrogen restitution makes this species a suitable candidate for industrial production of high-starch biomass.
Collapse
Affiliation(s)
- Giorgia Carnovale
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, PO 115, NO-1431 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, NO-1432 Ås, Norway
| | - Carmen Lama
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| | - Sonia Torres
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| | - Filipa Rosa
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, PO 115, NO-1431 Ås, Norway
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| | - Svein Jarle Horn
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, NO-1432 Ås, Norway
| | - Kari Skjånes
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, PO 115, NO-1431 Ås, Norway.
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena comercial s/n (Muelle pesquero), 11500 El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
6
|
Starch-Rich Microalgae as an Active Ingredient in Beer Brewing. Foods 2022; 11:foods11101449. [PMID: 35627018 PMCID: PMC9141292 DOI: 10.3390/foods11101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgal biomass is widely studied for its possible application in food and human nutrition due to its multiple potential health benefits, and to address raising sustainability concerns. An interesting field whereby to further explore the application of microalgae is that of beer brewing, due to the capacity of some species to accumulate large amounts of starch under specific growth conditions. The marine species Tetraselmis chui is a well-known starch producer, and was selected in this study for the production of biomass to be explored as an active ingredient in beer brewing. Cultivation was performed under nitrogen deprivation in 250 L tubular photobioreactors, producing a biomass containing 50% starch. The properties of high-starch microalgal biomass in a traditional mashing process were then assessed to identify critical steps and challenges, test the efficiency of fermentable sugar release, and develop a protocol for small-scale brewing trials. Finally, T. chui was successfully integrated at a small scale into the brewing process as an active ingredient, producing microalgae-enriched beer containing up to 20% algal biomass. The addition of microalgae had a noticeable effect on the beer properties, resulting in a product with distinct sensory properties. Regulation of pH proved to be a key parameter in the process.
Collapse
|
7
|
Pan Y, Shen Y, Zhang H, Ran X, Xie T, Zhang Y, Yao C. Fine-tuned regulation of photosynthetic performance via γ-aminobutyric acid (GABA) supply coupled with high initial cell density culture for economic starch production in microalgae. BIORESOUR BIOPROCESS 2022; 9:52. [PMID: 38647858 PMCID: PMC10992858 DOI: 10.1186/s40643-022-00541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgal starch is considered as renewable and sustainable feedstock for biofuels and biorefinery. High cell density culture is favourable for photoautotrophic starch production in microalgae in the aspects of productivity and economy, but it often encounters low starch content or extra stress exposure that limits the production. This study aimed to economically enhance photosynthetic starch production from CO2 fixation in a green microalga Tetraselmis subcordiformis by regulating photosynthetic stress status with a signalling molecule γ-aminobutyric acid (GABA) combined with the application of high initial cell density culture. By increasing initial cell density (ICD) from the normal of 1.1 g L-1 (NICD) to as high as 2.8 g L-1 (HICD), the starch content, yield, and theoretical productivity were improved by 7%, 63%, and 42%, respectively. The addition of GABA under HICD resulted in 14%, 19%, and 26% of further enhancement in starch content, yield, and theoretical productivity, respectively. GABA exhibited distinct regulatory mechanisms on photosynthesis and stress status under HICD relative to NICD. GABA augmented excessive light energy absorption and electron transfer through photosystem II that reinforced the photoinhibition under NICD, while alleviated the stress reversely under HICD, both of which facilitated starch production by enabling a suitable stress status while simultaneously maintaining a sufficient photosynthetic activity. The increase of ICD and/or GABA supply particularly boosted amylopectin accumulation, leading to the changes in starch composition and was more favourable for fermentation-based biofuels production. Preliminary techno-economic analysis showed that the highest net extra benefit of 9.64 $ m-3 culture could be obtained under HICD with 2.5 mM GABA supply where high starch content (62%DW) and yield (2.5 g L-1) were achieved. The combined HICD-GABA regulation was a promising strategy for economic starch production from CO2 by microalgae for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuhan Shen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Haoyu Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiuyuan Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
8
|
Dang BT, Bui XT, Tran DPH, Hao Ngo H, Nghiem LD, Hoang TKD, Nguyen PT, Nguyen HH, Vo TKQ, Lin C, Yi Andrew Lin K, Varjani S. Current application of algae derivatives for bioplastic production: A review. BIORESOURCE TECHNOLOGY 2022; 347:126698. [PMID: 35026424 DOI: 10.1016/j.biortech.2022.126698] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 05/18/2023]
Abstract
Improper use of conventional plastics poses challenges for sustainable energy and environmental protection. Algal derivatives have been considered as a potential renewable biomass source for bioplastic production. Algae derivatives include a multitude of valuable substances, especially starch from microalgae, short-chain length polyhydroxyalkanoates (PHAs) from cyanobacteria, polysaccharides from marine and freshwater macroalgae. The algae derivatives have the potential to be used as key ingredients for bioplastic production, such as starch and PHAs or only as an additive such as sulfated polysaccharides. The presence of distinctive functional groups in algae, such as carboxyl, hydroxyl, and sulfate, can be manipulated or tailored to provide desirable bioplastic quality, especially for food, pharmaceutical, and medical packaging. Standardizing strains, growing conditions, harvesting and extracting algae in an environmentally friendly manner would be a promising strategy for pollution control and bioplastic production.
Collapse
Affiliation(s)
- Bao-Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam.
| | - Duyen P H Tran
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Khanh-Dieu Hoang
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Phuong-Thao Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Viet Nam National University Ho Chi Minh (VNUHCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City 700000, Viet Nam
| | - Hai H Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city 700000, Vietnam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Kun Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|