1
|
Gubin D, Weinert D, Stefani O, Otsuka K, Borisenkov M, Cornelissen G. Wearables in Chronomedicine and Interpretation of Circadian Health. Diagnostics (Basel) 2025; 15:327. [PMID: 39941257 PMCID: PMC11816745 DOI: 10.3390/diagnostics15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Wearable devices have gained increasing attention for use in multifunctional applications related to health monitoring, particularly in research of the circadian rhythms of cognitive functions and metabolic processes. In this comprehensive review, we encompass how wearables can be used to study circadian rhythms in health and disease. We highlight the importance of these rhythms as markers of health and well-being and as potential predictors for health outcomes. We focus on the use of wearable technologies in sleep research, circadian medicine, and chronomedicine beyond the circadian domain and emphasize actigraphy as a validated tool for monitoring sleep, activity, and light exposure. We discuss various mathematical methods currently used to analyze actigraphic data, such as parametric and non-parametric approaches, linear, non-linear, and neural network-based methods applied to quantify circadian and non-circadian variability. We also introduce novel actigraphy-derived markers, which can be used as personalized proxies of health status, assisting in discriminating between health and disease, offering insights into neurobehavioral and metabolic status. We discuss how lifestyle factors such as physical activity and light exposure can modulate brain functions and metabolic health. We emphasize the importance of establishing reference standards for actigraphic measures to further refine data interpretation and improve clinical and research outcomes. The review calls for further research to refine existing tools and methods, deepen our understanding of circadian health, and develop personalized healthcare strategies.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Kuniaki Otsuka
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Gubin DG, Borisenkov MF, Kolomeichuk SN, Markov AA, Weinert D, Cornelissen G, Stefani O. Evaluating circadian light hygiene: Methodology and health implications. RUSSIAN OPEN MEDICAL JOURNAL 2024; 13. [DOI: 10.15275/rusomj.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
Abstract
Background — A growing body of research demonstrates that a substantial daily range of light exposure, characterized by ample daylight followed by darkness during sleep, is essential for human well-being. This encompasses crucial aspects like sleep quality, mood regulation, and cardiovascular and metabolic health. Objective — This study characterizes Circadian Light Hygiene (CLH) as an essential factor in maintaining health, well-being, and longevity in modern society. CLH involves adjusting the 24-hour light exposure dynamic range to support the natural sleep-wake cycle and circadian rhythms. Three major challenges to CLH negatively impacting human health are: 1) light pollution (light at night, or LAN), characterized by excessive evening and nighttime artificial light; 2) insufficient natural daylight; and 3) irregular light exposure patterns. These interacting challenges necessitate a systematic approach to measurement and analysis. Material and Methods — A systematic review of peer-reviewed literature published through October 30, 2024, examined the methodologies and health effects of circadian and seasonal aspects of light exposure. Conclusion — This review elucidates fundamental principles of circadian light hygiene, synthesizing existing literature and our research to assess the benefits of adequate daylight, the risks of light at night, and adverse outcomes stemming from diminished light exposure range, mistimed light exposure, and irregular patterns. Novel indices for quantifying and optimizing circadian light hygiene are introduced.
Collapse
Affiliation(s)
- Denis G. Gubin
- Tyumen State Medical University, Tyumen, Russia; Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail F. Borisenkov
- Tyumen State Medical University, Tyumen, Russia; Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Sergey N. Kolomeichuk
- Tyumen State Medical University, Tyumen Russia; Branch of the Federal Research Centre Karelian Science Centre of the Russian Academy of Science, Petrozavodsk, Russia
| | | | | | | | - Oliver Stefani
- Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| |
Collapse
|
3
|
Gubin D, Cornelissen G, Stefani O, Weinert D. Special Issue on “Research on Circadian Rhythms in Health and Disease”. APPLIED SCIENCES 2023; 13:10728. [DOI: 10.3390/app131910728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Despite rigorous investigation of circadian rhythms in humans and animal models in the past, basic chronobiologic principles have not yet entered clinical practice [...]
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, 634009 Tomsk, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oliver Stefani
- Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
4
|
Gubin D, Vetoshkin A, Shurkevich N, Gapon L, Borisenkov M, Cornelissen G, Weinert D. Chronotype and lipid metabolism in Arctic Sojourn Workers. Chronobiol Int 2023; 40:1198-1208. [PMID: 37700623 DOI: 10.1080/07420528.2023.2256839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/13/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023]
Abstract
This study relates answers to the Munich Chronotype Questionnaire (MCTQ) and Pittsburgh Sleep Quality Index (PSQI) from Arctic Sojourn Workers (ASW) of Yamburg Settlement, 68° Latitude North, 75° Longitude East (n = 180; mean age ± SD; range: 49.2 ± 7.8; 25-66 y; 45% women) to Arctic Sojourn Work Experience (ASWE), age and health status. Chronotype, Mid Sleep on Free Days sleep corrected (MSFsc) and sleep characteristics of ASW were compared to those of age-matched Tyumen Residents (TR, n = 270; mean age ± SD; range: 48.4 ± 8.4; 25-69 y; 48% women), 57° Latitude North, 65° Longitude East. ASW have earlier MSFsc than TR (70 min in men, p < 0.0001, and 45 min in women, p < 0.0001). Unlike TR, their MSFsc was not associated with age (r = 0.037; p = 0.627) and was linked to a larger Social Jet Lag (+21 min in men; p = 0.003, and +18 min in women; p = 0.003). These differences were not due to outdoor light exposure (OLE): OLE on work (OLEw) or free (OLEf) days was not significantly different between ASW and TR in men and was significantly less in ASW than in TR women (OLEw: -31 min; p < 0.001; OLEf: -24 min; p = 0.036). ASWE, but not age, was associated with compromised lipid metabolism in men. After accounting for multiple testing, when corrected for age and sex, higher triglycerides to high-density lipoprotein ratio, TG/HDL correlated with ASWE (r = 0.271, p < 0.05). In men, greater SJL was associated with lower HDL (r = -0.204; p = 0.043). Worse proxies of metabolic health were related to unfavorable components of the Pittsburgh Sleep Quality Index in ASW. Higher OLE on free days was associated with lower systolic (b = -0.210; p < 0.05) and diastolic (b = -0.240; p < 0.05) blood pressure.
Collapse
Affiliation(s)
- Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, Tyumen, Russia
- Department of Biology, Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexander Vetoshkin
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Medical Unit, Gazprom Dobycha Yamburg LLC, Novy Urengoy, Russia
| | - Nina Shurkevich
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ludmila Gapon
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail Borisenkov
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Danilenko KV, Stefani O, Voronin KA, Mezhakova MS, Petrov IM, Borisenkov MF, Markov AA, Gubin DG. Wearable Light-and-Motion Dataloggers for Sleep/Wake Research: A Review. APPLIED SCIENCES 2022; 12:11794. [DOI: 10.3390/app122211794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Long-term recording of a person’s activity (actimetry or actigraphy) using devices typically worn on the wrist is increasingly applied in sleep/wake, chronobiological, and clinical research to estimate parameters of sleep and sleep-wake cycles. With the recognition of the importance of light in influencing these parameters and with the development of technological capabilities, light sensors have been introduced into devices to correlate physiological and environmental changes. Over the past two decades, many such new devices have appeared from different manufacturers. One of the aims of this review is to help researchers and clinicians choose the data logger that best fits their research goals. Seventeen currently available light-and-motion recorders entered the analysis. They were reviewed for appearance, dimensions, weight, mounting, battery, sensors, features, communication interface, and software. We found that all devices differed from each other in several features. In particular, six devices are equipped with a light sensor that can measure blue light. It is noteworthy that blue light most profoundly influences the physiology and behavior of mammals. As the wearables market is growing rapidly, this review helps guide future developments and needs to be updated every few years.
Collapse
Affiliation(s)
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Kirill A. Voronin
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
| | - Marina S. Mezhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
| | - Ivan M. Petrov
- Department of Biological & Medical Physics UNSECO, Medical University, 625023 Tyumen, Russia
| | - Mikhail F. Borisenkov
- Institute of Physiology of Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Aleksandr A. Markov
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
| | - Denis G. Gubin
- Department of Biology, Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, 634009 Tomsk, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
| |
Collapse
|