1
|
Ketabat F, Alcorn J, Kelly ME, Badea I, Chen X. Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization. SMALL SCIENCE 2024; 4:2400079. [PMID: 40212070 PMCID: PMC11935279 DOI: 10.1002/smsc.202400079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Indexed: 04/13/2025] Open
Abstract
Cardiac tissue engineering has been rapidly evolving with diverse applications, ranging from the repair of fibrotic tissue caused by "adverse remodeling," to the replacement of specific segments of heart tissue, and ultimately to the creation of a whole heart. The repair or replacement of cardiac tissue often involves the development of tissue scaffolds or constructs and the subsequent assessment of their performance and functionality. For this, the design and/or selection of biomaterials, and cell types, scaffold fabrication, and in vitro characterizations are the first starting points, yet critical, to ensure success in subsequent implantation in vivo. This highlights the importance of scaffold fabrication and in vitro experiments/characterization with protocols for cardiac tissue engineering. Yet, a comprehensive and critical review of these has not been established and documented. As inspired, herein, the latest development and advances in scaffold fabrication and in vitro characterization for cardiac tissue engineering are critically reviewed, with focus on biomaterials, cell types, additive manufacturing techniques for scaffold fabrication, and common in vitro characterization techniques or methods. This article would be of benefit to the ones who are working on cardiac tissue engineering by providing insights into the scaffold fabrication and in vitro investigations.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| | - Jane Alcorn
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Michael E. Kelly
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Surgery, College of MedicineUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5Canada
| | - Ildiko Badea
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Mechanical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| |
Collapse
|
2
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
3
|
Mohabatpour F, Yazdanpanah Z, Papagerakis S, Chen X, Papagerakis P. Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration. J Funct Biomater 2022; 13:jfb13020071. [PMID: 35735926 PMCID: PMC9225469 DOI: 10.3390/jfb13020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Injectable hydrogels, as carriers, offer great potential to incorporate cells or growth factors for dental tissue regeneration. Notably, the development of injectable hydrogels with appropriate structures and properties has been a challenging task, leaving much to be desired in terms of cytocompatibility, antibacterial and self-healing properties, as well as the ability to support dental stem cell functions. This paper presents our study on the development of a novel self-cross-linkable hydrogel composed of oxidized alginate and carboxymethyl chitosan and its characterization as a cell carrier for dental enamel regeneration in vitro. Oxidized alginate was synthesized with 60% theoretical oxidation degree using periodate oxidation and characterized by Fourier Transform Infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and Ultraviolet-visible absorption spectroscopy. Then, hydrogels were prepared at three varying weight ratios of oxidized alginate to carboxymethyl chitosan (4:1, 3:1, and 2:1) through Schiff base reactions, which was confirmed by Fourier Transform Infrared spectroscopy. The hydrogels were characterized in terms of gelation time, swelling ratio, structure, injectability, self-healing, antibacterial properties, and in vitro characterization for enamel regeneration. The results demonstrated that, among the three hydrogels examined, the one with the highest ratio of oxidized alginate (i.e., 4:1) had the fastest gelation time and the lowest swelling ability, and that all hydrogels were formed with highly porous structures and were able to be injected through a 20-gauge needle without clogging. The injected hydrogels could be rapidly reformed with the self-healing property. The hydrogels also showed antibacterial properties against two cariogenic bacteria: Streptococcus mutans and Streptococcus sobrinus. For in vitro enamel regeneration, a dental epithelial cell line, HAT-7, was examined, demonstrating a high cell viability in the hydrogels during injection. Furthermore, HAT-7 cells encapsulated in the hydrogels showed alkaline phosphatase production and mineral deposition, as well as maintaining their round morphology, after 14 days of in vitro culture. Taken together, this study has provided evidence that the oxidized alginate-carboxymethyl chitosan hydrogels could be used as an injectable cell carrier for dental enamel tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| |
Collapse
|
4
|
Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021; 22:5929. [PMID: 34072959 PMCID: PMC8198586 DOI: 10.3390/ijms22115929] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey;
| | - Ayca Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Hüseyin Avci
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
- Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
| | - Ali Akpek
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Gözde Yesiltas
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Tuba Canak-Ipek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| |
Collapse
|
5
|
Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int 2020; 2020:8810813. [PMID: 33488736 PMCID: PMC7787857 DOI: 10.1155/2020/8810813] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can maintain self-renewal and enhanced multidifferentiation potential through the release of a variety of paracrine factors and extracellular vesicles, allowing them to repair damaged organs and tissues. Consequently, considerable attention has increasingly been paid to their application in tissue engineering and organ regeneration. Here, we provide a comprehensive overview of the current status of ADSC preparation, including harvesting, isolation, and identification. The advances in preclinical and clinical evidence-based ADSC therapy for bone, cartilage, myocardium, liver, and nervous system regeneration as well as skin wound healing are also summarized. Notably, the perspectives, potential challenges, and future directions for ADSC-related researches are discussed. We hope that this review can provide comprehensive and standardized guidelines for the safe and effective application of ADSCs to achieve predictable and desired therapeutic effects.
Collapse
|
6
|
He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater 2020; 9:e2001175. [PMID: 33000909 DOI: 10.1002/adhm.202001175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Occlusion of coronary artery and subsequent damage or death of myocardium can lead to myocardial infarction (MI) and even heart failure-one of the leading causes of deaths world wide. Notably, myocardium has extremely limited regeneration potential due to the loss or death of cardiomyocytes (i.e., the cells of which the myocardium is comprised) upon MI. A variety of stem cells and stem cell-derived cardiovascular cells, in situ cardiac fibroblasts and endogenous proliferative epicardium, have been exploited to provide renewable cellular sources to treat injured myocardium. Also, different strategies, including direct injection of cell suspensions, bioactive molecules, or cell-incorporated biomaterials, and implantation of artificial cardiac scaffolds (e.g., cell sheets and cardiac patches), have been developed to deliver renewable cells and/or bioactive molecules to the MI site for the myocardium regeneration. This article briefly surveys cell sources and delivery strategies, along with biomaterials and their processing techniques, developed for MI treatment. Key issues and challenges, as well as recommendations for future research, are also discussed.
Collapse
Affiliation(s)
- Lihong He
- Department of Cell Biology Medical College of Soochow University Suzhou 215123 China
| | - Xiongbiao Chen
- Department of Mechanical Engineering Division of Biomedical Engineering University of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
7
|
Taghipour YD, Hokmabad VR, Del Bakhshayesh AR, Asadi N, Salehi R, Nasrabadi HT. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. Curr Med Chem 2020; 27:2658-2680. [DOI: 10.2174/0929867326666190711103956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
:Hydrogels are known as polymer-based networks with the ability to absorb water and other body fluids. Because of this, the hydrogels are used to preserve drugs, proteins, nutrients or cells. Hydrogels possess great biocompatibility, and properties like soft tissue, and networks full of water, which allows oxygen, nutrients, and metabolites to pass. Therefore, hydrogels are extensively employed as scaffolds in tissue engineering. Specifically, hydrogels made of natural polymers are efficient structures for tissue regeneration, because they mimic natural environment which improves the expression of cellular behavior.:Producing natural polymer-based hydrogels from collagen, hyaluronic acid (HA), fibrin, alginate, and chitosan is a significant tactic for tissue engineering because it is useful to recognize the interaction between scaffold with a tissue or cell, their cellular reactions, and potential for tissue regeneration. The present review article is focused on injectable hydrogels scaffolds made of biocompatible natural polymers with particular features, the methods that can be employed to engineer injectable hydrogels and their latest applications in tissue regeneration.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
You F, Wu X, Kelly M, Chen X. Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00058-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Facile Fabrication of a Low-Cost Alginate-Polyacrylamide Composite Aerogel for the Highly Efficient Removal of Lead Ions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we demonstrate a one-step method for fabricating a novel sodium alginate-polyacrylamide (Alg–PAM) composite aerogel, which exhibits a very high affinity and selectivity towards Pb2+. The as-prepared Alg–PAM composite aerogel can uptake 99.2% of Pb2+ from Pb2+-containing aqueous solution (0.1 mM) and the maximum adsorption capacity for Pb2+ reaches 252.2 mg/g, which is higher than most of the reported Pb2+ adsorbents. Most importantly, the prepared Alg–PAM adsorbent can be regenerated through a simple acid-washing process with only a little loss of the adsorption performance after five adsorption–desorption cycles. In addition, the influence of the experimental conditions, such as the solution pH, contact time, and temperature, on the adsorption performance of the Alg–PAM adsorbent was studied. It is clear that the low-cost raw materials, simple synthesis, regeneration ability, and highly efficient removal performance mean that the designed Alg–PAM aerogel has broad application potential in treating Pb2+-containing wastewater.
Collapse
|
10
|
A Bioactive Cartilage Graft of IGF1-Transduced Adipose Mesenchymal Stem Cells Embedded in an Alginate/Bovine Cartilage Matrix Tridimensional Scaffold. Stem Cells Int 2019; 2019:9792369. [PMID: 31149016 PMCID: PMC6501174 DOI: 10.1155/2019/9792369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/18/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023] Open
Abstract
Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14−, and CD34−) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O'Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.
Collapse
|
11
|
Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds. J Funct Biomater 2017; 8:jfb8040048. [PMID: 29104215 PMCID: PMC5748555 DOI: 10.3390/jfb8040048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young’s modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.
Collapse
|
12
|
Izadifar M, Babyn P, Kelly ME, Chapman D, Chen X. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment. Tissue Eng Part C Methods 2017; 23:548-564. [PMID: 28726575 DOI: 10.1089/ten.tec.2017.0222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in situ. This study aims at (i) assessing the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigating the potential of synchrotron X-ray phase-contrast imaging computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in situ via an ex vivo study. Alginate laden with human coronary artery endothelial cells was bioprinted layer by layer, forming cardiac constructs with varying architectures. The elastic modulus, impedance, porosity, and other structural features, along with the cell viability and degradation of printed implants were examined in vitro over 25 days. Two selected cardiac constructs were surgically implanted onto the myocardium of rats and 10 days later, the rat hearts with implants were imaged ex vivo by means of PCI-CT at varying X-ray energies and CT-scan times. The elastic modulus/impedance, porosity, and structural features of the implant were inferred from the PCI-CT images by using statistical models and compared with measured values. The printing patterns had significant effects on implant porosity, elastic modulus, and impedance. A particular 3D-printing pattern with an interstrand distance of 900 μm and strand alignment angle of 0/45/90/135° provided relatively higher stiffness and electrical conductivity with a suitable porosity, maintaining high cell viability over 7 days. The X-ray photon energy of 30-33 keV utilizing a CT-scan time of 1-1.2 h resulted in a low-dose PCI-CT, which provided a good visibility of the low-X-ray absorbent alginate implants. After 10 days postimplantation, the PCI-CT provided a reasonably accurate estimation of implant strand thickness and alignment, pore size and interconnectivity, porosity, elastic modulus, and impedance, which were consistent with our measurements. Findings from this study suggest that 3D-printing patterns can be used to modulate electrical/mechanical behavior of alginate implants, and PCI-CT can be potentially used as a 3D quantitative imaging tool for assessing structural and electrical/mechanical behavior of hydrogel cardiac implants in small animal models.
Collapse
Affiliation(s)
- Mohammad Izadifar
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,2 Department of Surgery, College of Medicine, University of Saskatchewan , Saskatoon, Canada .,3 Department of Mechanical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada
| | - Paul Babyn
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,4 Department of Medical Imaging, College of Medicine, University of Saskatchewan , Saskatoon, Canada
| | - Michael E Kelly
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,2 Department of Surgery, College of Medicine, University of Saskatchewan , Saskatoon, Canada
| | - Dean Chapman
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,4 Department of Medical Imaging, College of Medicine, University of Saskatchewan , Saskatoon, Canada .,5 Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan , Saskatoon, Canada
| | - Xiongbiao Chen
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,3 Department of Mechanical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada
| |
Collapse
|
13
|
Zwitterionic Polymer P(AM-DMC-AMPS) as a Low-Molecular-Weight Encapsulator in Deepwater Drilling Fluid. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7060594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|