1
|
Lin J, Ding B, Song Z, Li Z, Li S. A Model of Multi-Finger Coordination in Keystroke Movement. SENSORS (BASEL, SWITZERLAND) 2024; 24:1221. [PMID: 38400379 PMCID: PMC10892657 DOI: 10.3390/s24041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
In multi-finger coordinated keystroke actions by professional pianists, movements are precisely regulated by multiple motor neural centers, exhibiting a certain degree of coordination in finger motions. This coordination enhances the flexibility and efficiency of professional pianists' keystrokes. Research on the coordination of keystrokes in professional pianists is of great significance for guiding the movements of piano beginners and the motion planning of exoskeleton robots, among other fields. Currently, research on the coordination of multi-finger piano keystroke actions is still in its infancy. Scholars primarily focus on phenomenological analysis and theoretical description, which lack accurate and practical modeling methods. Considering that the tendon of the ring finger is closely connected to adjacent fingers, resulting in limited flexibility in its movement, this study concentrates on coordinated keystrokes involving the middle and ring fingers. A motion measurement platform is constructed, and Leap Motion is used to collect data from 12 professional pianists. A universal model applicable to multiple individuals for multi-finger coordination in keystroke actions based on the backpropagation (BP) neural network is proposed, which is optimized using a genetic algorithm (GA) and a sparrow search algorithm (SSA). The angular rotation of the ring finger's MCP joint is selected as the model output, while the individual difference information and the angular data of the middle finger's MCP joint serve as inputs. The individual difference information used in this study includes ring finger length, middle finger length, and years of piano training. The results indicate that the proposed SSA-BP neural network-based model demonstrates superior predictive accuracy, with a root mean square error of 4.8328°. Based on this model, the keystroke motion of the ring finger's MCP joint can be accurately predicted from the middle finger's keystroke motion information, offering an evaluative method and scientific guidance for the training of multi-finger coordinated keystrokes in piano learners.
Collapse
Affiliation(s)
| | - Baihui Ding
- Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin 300350, China; (J.L.); (Z.S.); (Z.L.); (S.L.)
| | | | | | | |
Collapse
|
2
|
A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables.
Collapse
|
3
|
Remote Sensing Inversion of Suspended Matter Concentration Using a Neural Network Model Optimized by the Partial Least Squares and Particle Swarm Optimization Algorithms. SUSTAINABILITY 2022. [DOI: 10.3390/su14042221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Suspended matter concentration is an important index for the assessment of a water environment and it is also one of the core parameters for remote sensing inversion of water color. Due to the optical complexity of a water body and the interaction between different water quality parameters, the remote sensing inversion accuracy of suspended matter concentration is currently limited. To solve this problem, based on the remote sensing images from Gaofen-2 (GF-2) and the field-measured suspended matter concentration, taking a section of the Haihe River as the study area, this study establishes a remote sensing inversion model. The model combines the partial least squares (PLS) algorithm and the particle swarm optimization (PSO) algorithm to optimize the back-propagation neural network (BPNN) model, i.e., the PLS-PSO-BPNN model. The partial least squares algorithm is involved in screening the input values of the neural network model. The particle swarm optimization algorithm optimizes the weights and thresholds of the neural network model and it thus effectively overcomes the over-fitting of the neural network. The inversion accuracy of the optimized neural network model is compared with that of the partial least squares model and the traditional neural network model by determining the coefficient, the mean absolute error, the root mean square error, the correlation coefficient and the relative root mean square error. The results indicate that the root mean squared error of the PLS-PSO-BPNN inversion model was 3.05 mg/L, which is higher than the accuracy of the statistical regression model. The developed PLS-PSO-BPNN model could be widely applied in other areas to better invert the water quality parameters of surface water.
Collapse
|
4
|
Modeling Surface Water Quality Using the Adaptive Neuro-Fuzzy Inference System Aided by Input Optimization. SUSTAINABILITY 2021. [DOI: 10.3390/su13084576] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Modeling surface water quality using soft computing techniques is essential for the effective management of scarce water resources and environmental protection. The development of accurate predictive models with significant input parameters and inconsistent datasets is still a challenge. Therefore, further research is needed to improve the performance of the predictive models. This study presents a methodology for dataset pre-processing and input optimization for reducing the modeling complexity. The objective of this study was achieved by employing a two-sided detection approach for outlier removal and an exhaustive search method for selecting essential modeling inputs. Thereafter, the adaptive neuro-fuzzy inference system (ANFIS) was applied for modeling electrical conductivity (EC) and total dissolved solids (TDS) in the upper Indus River. A larger dataset of a 30-year historical period, measured monthly, was utilized in the modeling process. The prediction capacity of the developed models was estimated by statistical assessment indicators. Moreover, the 10-fold cross-validation method was carried out to address the modeling overfitting issue. The results of the input optimization indicate that Ca2+, Na+, and Cl− are the most relevant inputs to be used for EC. Meanwhile, Mg2+, HCO3−, and SO42− were selected to model TDS levels. The optimum ANFIS models for the EC and TDS data showed R values of 0.91 and 0.92, and the root mean squared error (RMSE) results of 30.6 µS/cm and 16.7 ppm, respectively. The optimum ANFIS structure comprises a hybrid training algorithm with 27 fuzzy rules of triangular fuzzy membership functions for EC and a Gaussian curve for TDS modeling, respectively. Evidently, the outcome of the present study reveals that the ANFIS modeling, aided with data pre-processing and input optimization, is a suitable technique for simulating the quality of surface water. It could be an effective approach in minimizing modeling complexity and elaborating proper management and mitigation measures.
Collapse
|
5
|
Wang X, Wang K, Ding J, Chen X, Li Y, Zhang W. Predicting water quality during urbanization based on a causality-based input variable selection method modified back-propagation neural network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:960-973. [PMID: 32827298 DOI: 10.1007/s11356-020-10514-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Rapid urbanization has been recognized as the primary cause of deteriorating water quality. Thus, it is crucial to take into account urbanization in water quality forecasting. The present study aims at finding the causal relationship between urbanization and water quality, and then predicting water quality based on this causality. For this purpose, nine urbanization indicators and 12 water quality parameters from 2006 to 2018 in Nanjing were collected as urbanization and water quality indices. Correlation and path analyses were firstly used to identify causal relationships between urbanization and water quality indices. Based on these causal relationships, comprehensive water quality indicators and their correlated urbanization parameters were input into a back-propagation neural network (BPNN) to predict water quality. In the improved BPNN, the R2 of the training sets were all greater than 0.99, and those of the test sets were all greater than 0.76, demonstrating that the optimized model is able to predict the water quality with reasonable accuracy. It also showed that the overall water quality in Nanjing will remain good from 2019 to 2028, which means that, when undergoing future urbanization process, water quality is not necessarily negatively affected. The transfer of industrial structure can have a positive influence on water quality. After 2028, the biological water environment index remained in a good state but the volatile phenol index continued to increase, making it a potential threat to future water quality. Industrial wastewater and fertilizer usage, as the primary sources of volatile phenols, should be prioritized for continued governmental control and monitoring into the future. This study provides new insight into the relationship between urbanization and water quality, and the presented models can assist in future-proofing water management strategies.
Collapse
Affiliation(s)
- Xinzi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Kejia Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jiamu Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xinqi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
- Nanjing Environmental Monitoring Center, Nanjing, 210098, People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
6
|
Aldhyani THH, Al-Yaari M, Alkahtani H, Maashi M. Water Quality Prediction Using Artificial Intelligence Algorithms. Appl Bionics Biomech 2020; 2020:6659314. [PMID: 33456498 PMCID: PMC7787777 DOI: 10.1155/2020/6659314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
During the last years, water quality has been threatened by various pollutants. Therefore, modeling and predicting water quality have become very important in controlling water pollution. In this work, advanced artificial intelligence (AI) algorithms are developed to predict water quality index (WQI) and water quality classification (WQC). For the WQI prediction, artificial neural network models, namely nonlinear autoregressive neural network (NARNET) and long short-term memory (LSTM) deep learning algorithm, have been developed. In addition, three machine learning algorithms, namely, support vector machine (SVM), K-nearest neighbor (K-NN), and Naive Bayes, have been used for the WQC forecasting. The used dataset has 7 significant parameters, and the developed models were evaluated based on some statistical parameters. The results revealed that the proposed models can accurately predict WQI and classify the water quality according to superior robustness. Prediction results demonstrated that the NARNET model performed slightly better than the LSTM for the prediction of the WQI values and the SVM algorithm has achieved the highest accuracy (97.01%) for the WQC prediction. Furthermore, the NARNET and LSTM models have achieved similar accuracy for the testing phase with a slight difference in the regression coefficient (RNARNET = 96.17% and RLSTM = 94.21%). This kind of promising research can contribute significantly to water management.
Collapse
Affiliation(s)
- Theyazn H. H Aldhyani
- Community College of Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed Al-Yaari
- Chemical Engineering Department, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Hasan Alkahtani
- College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mashael Maashi
- Software Engineering Department, King Saud University, Riyadh 11543, Saudi Arabia
| |
Collapse
|
7
|
Prediction of BOD Concentration in Wastewater Treatment Process Using a Modular Neural Network in Combination with the Weather Condition. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since weather has a huge impact on the wastewater treatment process (WWTP), the prediction accuracy for the Biochemical Oxygen Demand (BOD) concentration in WWTP would degenerate if using only one single artificial neural network as the model for soft measurement method. Aiming to solve this problem, the present study proposes a novel hybrid scheme using a modular neural network (MNN) combining with the factor of weather condition. First, discriminative features among different weather groups are selected to ensure a high accuracy for sample clustering based on weather conditions. Second, the samples are clustered based on a density-based clustering algorithm using the discriminative features. Third, the clustered samples are input to each module in MNN, with the auxiliary variables correlated with BOD prediction input to the corresponding model. Finally, a constructive radial basis function neural network with the error-correction algorithm is used as the model for each subnetwork to predict BOD concentration. The proposed scheme is evaluated on a standard wastewater treatment platform—Benchmark Simulation Model 1 (BSM1). Experimental results demonstrate the performance improvement of the proposed scheme on the prediction accuracy for BOD concentration in WWTP. Besides, the training time is shortened and the network structure is compact.
Collapse
|
8
|
A Review of the Artificial Neural Network Models for Water Quality Prediction. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175776] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water quality prediction plays an important role in environmental monitoring, ecosystem sustainability, and aquaculture. Traditional prediction methods cannot capture the nonlinear and non-stationarity of water quality well. In recent years, the rapid development of artificial neural networks (ANNs) has made them a hotspot in water quality prediction. We have conducted extensive investigation and analysis on ANN-based water quality prediction from three aspects, namely feedforward, recurrent, and hybrid architectures. Based on 151 papers published from 2008 to 2019, 23 types of water quality variables were highlighted. The variables were primarily collected by the sensor, followed by specialist experimental equipment, such as a UV-visible photometer, as there is no mature sensor for measurement at present. Five different output strategies, namely Univariate-Input-Itself-Output, Univariate-Input-Other-Output, Multivariate-Input-Other(multi), Multivariate-Input-Itself-Other-Output, and Multivariate-Input-Itself-Other (multi)-Output, are summarized. From results of the review, it can be concluded that the ANN models are capable of dealing with different modeling problems in rivers, lakes, reservoirs, wastewater treatment plants (WWTPs), groundwater, ponds, and streams. The results of many of the review articles are useful to researchers in prediction and similar fields. Several new architectures presented in the study, such as recurrent and hybrid structures, are able to improve the modeling quality of future development.
Collapse
|
9
|
A Prediction Model Based on Deep Belief Network and Least Squares SVR Applied to Cross-Section Water Quality. WATER 2020. [DOI: 10.3390/w12071929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the quality of fresh water resources is threatened by numerous pollutants. Prediction of water quality is an important tool for controlling and reducing water pollution. By employing superior big data processing ability of deep learning it is possible to improve the accuracy of prediction. This paper proposes a method for predicting water quality based on the deep belief network (DBN) model. First, the particle swarm optimization (PSO) algorithm is used to optimize the network parameters of the deep belief network, which is to extract feature vectors of water quality time series data at multiple scales. Then, combined with the least squares support vector regression (LSSVR) machine which is taken as the top prediction layer of the model, a new water quality prediction model referred to as PSO-DBN-LSSVR is put forward. The developed model is valued in terms of the mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination ( R 2 ). Results illustrate that the model proposed in this paper can accurately predict water quality parameters and better robustness of water quality parameters compared with the traditional back propagation (BP) neural network, LSSVR, the DBN neural network, and the DBN-LSSVR combined model.
Collapse
|
10
|
Optimized Erosion Prediction with MAGA Algorithm Based on BP Neural Network for Submerged Low-Pressure Water Jet. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to accurately predict the erosion effect of underwater cleaning with an angle nozzle under different working conditions, this paper uses refractory bricks to simulate marine fouling as the erosion target, and studies the optimized erosion prediction model by erosion test based on the submerged low-pressure water jet. The erosion test is conducted by orthogonal experimental design, and experimental data are used for the prediction model. By combining with statistical range and variance analysis methods, the jet pressure, impact time and jet angle are determined as three inputs of the prediction model, and erosion depth is the output index of the prediction model. A virtual data generation method is used to increase the amount of input data for the prediction model. This paper also proposes a Mind-evolved Advanced Genetic Algorithm (MAGA), which has a reliable optimization effect in the verification of four stand test functions. Then, the improved back-propagating (BP) neural network prediction models are established by respectively using Genetic Algorithm (GA) and MAGA optimization algorithms to optimize the initial thresholds and weights of the BP neural network. Compared to the prediction results of the BP and GA-BP models, the R2 of the MAGA-BP model is the highest, reaching 0.9954; the total error is reduced by 47.31% and 35.01%; the root mean square error decreases by 51.05% and 31.80%; and the maximum absolute percentage error decreases by 65.79% and 64.01%, respectively. The average prediction accuracy of the MAGA-BP model is controlled within 3%, which has been significantly improved. The results show that the prediction accuracy of the MAGA-BP prediction model is higher and more reliable, and the MAGA algorithm has a good optimization effect. This optimized erosion prediction method is feasible.
Collapse
|
11
|
Modeling the Nonlinearity of Sea Level Oscillations in the Malaysian Coastal Areas Using Machine Learning Algorithms. SUSTAINABILITY 2019. [DOI: 10.3390/su11174643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The estimation of an increase in sea level with sufficient warning time is important in low-lying regions, especially in the east coast of Peninsular Malaysia (ECPM). This study primarily aims to investigate the validity and effectiveness of the support vector machine (SVM) and genetic programming (GP) models for predicting the monthly mean sea level variations and comparing their prediction accuracies in terms of the model performances. The input dataset was obtained from Kerteh, Tioman Island, and Tanjung Sedili in Malaysia from January 2007 to December 2017 to predict the sea levels for five different time periods (1, 5, 10, 20, and 40 years). Further, the SVM and GP models are subjected to preprocessing to obtain optimal performance. The tuning parameters are generalized for the optimal input designs (SVM2 and GP2), and the results denote that SVM2 outperforms GP with R of 0.81 and 0.86 during the training and testing periods, respectively, at the study locations. However, GP can provide values of 0.71 and 0.79 for training and testing, respectively, at the study locations. The results show precise predictions of the monthly mean sea level, denoting the promising potential of the used models for performing sea level data analysis.
Collapse
|
12
|
Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns Using a Hybrid Intelligent Algorithm. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is crucial to study the axial compression behavior of concrete-filled steel tubular (CFST) columns to ensure the safe operation of engineering structures. The restriction between steel tubular and core concrete in CFSTs is complex and the relationship between geometric and material properties and axial compression behavior is highly nonlinear. These challenges have prompted the use of soft computing methods to predict the ultimate bearing capacity (abbreviated as Nu) under axial compression. Taking the square CFST short column as an example, a mass of experimental data is obtained through axial compression tests. Combined with support vector machine (SVM) and particle swarm optimization (PSO), this paper presents a new method termed PSVM (SVM optimized by PSO) for Nu value prediction. The nonlinear relationship in Nu value prediction is efficiently represented by SVM, and PSO is used to select the model parameters of SVM. The experimental dataset is utilized to verify the reliability of the PSVM model, and the prediction performance of PSVM is compared with that of traditional design methods and other benchmark models. The proposed PSVM model provides a better prediction of the ultimate axial capacity of square CFST short columns. As such, PSVM is an efficient alternative method other than empirical and theoretical formulas.
Collapse
|
13
|
Application of a Parallel Particle Swarm Optimization-Long Short Term Memory Model to Improve Water Quality Data. WATER 2019. [DOI: 10.3390/w11071317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water quality data cleaning is important for the management of water environments. A framework for water quality time series cleaning is proposed in this paper. Considering the nonlinear relationships among water quality indicators, support vector regression (SVR) is used to forecast water quality indicators when some indicators are missing or when they show abnormal values at a certain point in time. Considering the time series of water quality information, long short-term memory (LSTM) networks are used to forecast water quality indicators when all indicators are missing at a certain point in time. A parallel model based on particle swarm optimization (PSO) and LSTM is realized based on a microservices architecture to improve the efficiency of model execution and the predictive accuracy of the LSTM networks. The performance of the model is evaluated in terms of the mean absolute error (MAE) and root-mean-square error (RMSE). Inlet water quality data from a wastewater treatment plant in Gaobeidian, Beijing, China is considered as a case study to examine the effectiveness of this approach. The experimental results reveal that this model has better predictive accuracy than other data-driven models because of smaller MAE and RMSE and has an advantage in terms of time consumption compared with standalone serial algorithms.
Collapse
|
14
|
Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios. WATER 2019. [DOI: 10.3390/w11061231] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water quality analysis is a crucial step in water resources management and needs to be addressed urgently to control any pollution that may adversely affect the ecosystem and to ensure the environmental standards are being met. Thus, this work is an attempt to develop an efficient model using support vector machine (SVM) to predict the water quality of Langat River Basin through the analysis of the data of six parameters of dual reservoirs that are located in the catchment. The proposed model could be considered as an effective tool for identifying the water quality status for the river catchment area. In addition, the major advantage of the proposed model is that it could be useful for ungauged catchments or those lacking enough numbers of monitoring stations for water quality parameters. These parameters, namely pH, Suspended Solids (SS), Dissolved Oxygen (DO), Ammonia Nitrogen (AN), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD) were provided by the Malaysian Department of Environment (DOE). The differences between dual scenarios 1 and 2 depend on the information from prior stations to forecast DO levels for succeeding sites (Scenario 2). This scheme has the capacity to simulate water-quality accurately, with small prediction errors. The resulting correlation coefficient has maximum values of 0.998 and 0.979 after the application of Scenario 1. The approach with Type 1 SVM regression along with 10-fold cross-validation methods worked to generate precise results. The MSE value was found to be between 0.004 and 0.681, with Scenario 1 showing a better outcome.
Collapse
|