1
|
Coll De Peña A, Gutterman-Johns E, Gautam GP, Rutberg J, Frej MB, Mehta DR, Shah S, Tripathi A. Assessment of pDNA isoforms using microfluidic electrophoresis. Electrophoresis 2024; 45:1525-1534. [PMID: 38571381 DOI: 10.1002/elps.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
The recent rise in nucleic acid-based vaccines and therapies has resulted in an increased demand for plasmid DNA (pDNA). As a result, there is added pressure to streamline the manufacturing of these vectors, particularly their design and construction, which is currently considered a bottleneck. A significant challenge in optimizing pDNA production is the lack of high-throughput and rapid analytical methods to support the numerous samples produced during the iterative plasmid construction step and for batch-to-batch purity monitoring. pDNA is generally present as one of three isoforms: supercoiled, linear, or open circular. Depending on the ultimate use, the desired isoform may be supercoiled in the initial stages for cell transfection or linear in the case of mRNA synthesis. Here, we present a high-throughput microfluidic electrophoresis method capable of detecting the three pDNA isoforms and determining the size and concentration of the predominant supercoiled and linear isoforms from 2 to 7 kb. The limit of detection of the method is 0.1 ng/µL for the supercoiled and linear isoforms and 0.5 ng/µL for the open circular isoform, with a maximum loading capacity of 10-15 ng/µL. The turnaround time is 1 min/sample, and the volume requirement is 10 µL, making the method suitable for process optimization and batch-to-batch analysis. The results presented in this study will enhance the understanding of electrophoretic transport in microscale systems dependent on molecular conformations and potentially aid technological advances in diverse areas relevant to microfluidic devices.
Collapse
Affiliation(s)
- Adriana Coll De Peña
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Everett Gutterman-Johns
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | | | - Jenna Rutberg
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Menel Ben Frej
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Dipti R Mehta
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Shreyas Shah
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Feng X, Su Z, Cheng Y, Ma G, Zhang S. Messenger RNA chromatographic purification: advances and challenges. J Chromatogr A 2023; 1707:464321. [PMID: 37639849 DOI: 10.1016/j.chroma.2023.464321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Messenger RNA (mRNA) technologies have shown great potential in prophylactic vaccines and therapeutic medicines due to their adaptability, rapidity, efficacy, and safety. The purity of mRNA determines the efficacy and safety of mRNA drugs. Though chromatographic technologies are currently employed in mRNA purification, they are facing challenges, mainly arising from the large size, relatively simple chemical composition, instability, and high resemblance of by-products to the target mRNA. In this review, we will first make a comprehensive analysis of physiochemical properties differences between mRNA and proteins, then the major challenges facing in mRNA purification and general considerations are highlighted. A detailed summary of the state-of-arts in mRNA chromatographic purification will be provided, which are mainly classified into physicochemical property-based (size, charge, and hydrophobicity) and chemical structure-based (phosphate backbone, bases, cap structure, and poly A tail) technologies. Efforts in eliminating dsRNA byproducts via post in vitro transcript (IVT) purification and by manipulating the IVT process to reduce the generation of dsRNA are highlighted. Finally, a brief summary of the current status of chromatographic purification of the emerging circular mRNA (circRNA) is provided. We hope this review will provide some useful guidance for the Quality by Design (QbD) of mRNA downstream process development.
Collapse
Affiliation(s)
- Xue Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China
| | - Yuan Cheng
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
4
|
Carapito R, Valente JFA, Queiroz JA, Sousa F. Arginine-Affinity Chromatography for Nucleic Acid (DNA and RNA) Isolation. Methods Mol Biol 2022; 2466:135-144. [PMID: 35585316 DOI: 10.1007/978-1-0716-2176-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapy has been emerging as a new strategy with great potential for the treatment of numerous diseases, especially those caused by gene defects. In this context, biotechnology plays a critical role on establishing suitable processes for biopharmaceuticals manufacturing, while the purification step still imposes a major burden. Affinity chromatography using amino acids as specific ligands has been successfully applied for plasmid DNA purification. In this protocol, we describe the process for nucleic acids production and extraction, as well as the chromatographic matrix synthesis for separation between DNA and RNA. This novel arginine-macroporous support presents excellent binding capacity and great robustness for nucleic acids isolation.
Collapse
Affiliation(s)
- Rita Carapito
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana F A Valente
- CDRSP-IPLEIRIA - Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, Marinha Grande, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
5
|
Hocharoen L, Noppiboon S, Kitsubun P. Toward QbD Process Understanding on DNA Vaccine Purification Using Design of Experiment. Front Bioeng Biotechnol 2021; 9:657201. [PMID: 34055759 PMCID: PMC8153680 DOI: 10.3389/fbioe.2021.657201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/08/2021] [Indexed: 01/13/2023] Open
Abstract
DNA vaccines, the third generation of vaccines, are a promising therapeutic option for many diseases as they offer the customization of their ability on protection and treatment with high stability. The production of DNA vaccines is considered rapid and less complicated compared to others such as mRNA vaccines, viral vaccines, or subunit protein vaccines. However, the main issue for DNA vaccines is how to produce the active DNA, a supercoiled isoform, to comply with the regulations. Our work therefore focuses on gaining a process understanding of the purification step which processes parameters that have impacts on the critical quality attribute (CQA), supercoiled DNA and performance attribute (PA), and step yield. Herein, pVax1/lacZ was used as a model. The process parameters of interest were sample application flow rates and salt concentration at washing step and at elution step in the hydrophobic interaction chromatography (HIC). Using a Design of Experiment (DoE) with central composite face centered (CCF) approach, 14 experiments plus four additional runs at the center points were created. The response data was used to establish regression predictive models and simulation was conducted in 10,000 runs to provide tolerance intervals of these CQA and PA. The approach of this process understanding can be applied for Quality by Design (QbD) on other DNA vaccines and on a larger production scale as well.
Collapse
Affiliation(s)
- Lalintip Hocharoen
- Bioprocess Research and Innovation Centre (BRIC), National Biopharmaceutical Facility (NBF), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Sarawuth Noppiboon
- Bioprocess Research and Innovation Centre (BRIC), National Biopharmaceutical Facility (NBF), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Panit Kitsubun
- Biochemical Engineering and System Biology Research Group (IBEG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| |
Collapse
|
6
|
Valente J, Pereira P, Sousa A, Queiroz J, Sousa F. Effect of Plasmid DNA Size on Chitosan or Polyethyleneimine Polyplexes Formulation. Polymers (Basel) 2021; 13:793. [PMID: 33807586 PMCID: PMC7962013 DOI: 10.3390/polym13050793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
Gene therapy could be simply defined as a strategy for the introduction of a functional copy of desired genes in patients, to correct some specific mutation and potentially treat the respective disorder. However, this straightforward definition hides very complex processes related to the design and preparation of the therapeutic genes, as well as the development of suitable gene delivery systems. Within non-viral vectors, polymeric nanocarriers have offered an ideal platform to be applied as gene delivery systems. Concerning this, the main goal of the study was to do a systematic evaluation on the formulation of pDNA delivery systems based on the complexation of different sized plasmids with chitosan (CH) or polyethyleneimine (PEI) polymers to search for the best option regarding encapsulation efficiency, surface charge, size, and delivery ability. The cytotoxicity and the transfection efficiency of these systems were accessed and, for the best p53 encoding pDNA nanosystems, the ability to promote protein expression was also evaluated. Overall, it was showed that CH polyplexes are more efficient on transfection when compared with the PEI polyplexes, resulting in higher P53 protein expression. Cells transfected with CH/p53-pDNA polyplexes presented an increase of around 54.2% on P53 expression, while the transfection with the PEI/p53-pDNA polyplexes resulted in a 32% increase.
Collapse
Affiliation(s)
- J.F.A. Valente
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
- CDRsp—Centre Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - P. Pereira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - A. Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| | - J.A. Queiroz
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| | - F. Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| |
Collapse
|
7
|
Valente JFA, Queiroz JA, Sousa F. Dilemma on plasmid DNA purification: binding capacity vs selectivity. J Chromatogr A 2020; 1637:461848. [PMID: 33421679 DOI: 10.1016/j.chroma.2020.461848] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Plasmid DNA chromatography is a powerful field in constant development and evolution. The use of this technique is considered mandatory in the production of an efficient and safe formulation to be applied for plasmid-mediated gene therapy. Concerning this, the search for an ideal chromatographic support/ligand combination motivated scientist to pursue a continuous improvement on the plasmid chromatography performance, looking for a progression on the ligands and supports used. The present review explores the different approaches used over time to purify plasmid DNA, ambitioning both high recovery and high purity levels. Overall, it is presented a critical discussion relying on the relevance of the binding capacity versus selectivity of the supports.
Collapse
Affiliation(s)
- J F A Valente
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506Covilhã, Portugal; CDRSP-IPLEIRIA - Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, Rua de Portugal - Zona Industrial, 2430-028Marinha Grande, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506Covilhã, Portugal
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506Covilhã, Portugal.
| |
Collapse
|
8
|
Eusébio D, Almeida AM, Alves JM, Maia CJ, Queiroz JA, Sousa F, Sousa Â. The Performance of Minicircle DNA Versus Parental Plasmid in p53 Gene Delivery Into HPV-18-Infected Cervical Cancer Cells. Nucleic Acid Ther 2020; 31:82-91. [PMID: 33252302 DOI: 10.1089/nat.2020.0904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Minicircle DNA (mcDNA) has been suggested as a vanguard technology for gene therapy, consisting of a nonviral DNA vector devoid of prokaryotic sequences. Unlike conventional plasmid DNA (pDNA), this small vector is able to sustain high expression rates throughout time. Thus, this work describes the construction, production, and purification of mcDNA-p53 and its precursor parental plasmid (PP)-p53 for a comparative study of both DNA vectors in the growth suppression of human papillomavirus (HPV)-18-infected cervical cancer cells. First, live cell imaging and fluorescence microscopy studies allowed to understand that mcDNA-p53 vector was able to enter cell nuclei more rapidly than PP-p53 vector, leading to a transfection efficiency of 68% against 34%, respectively. Then, p53 transcripts and protein expression assessment revealed that both vectors were able to induce transcription and the target protein expression. However, the mcDNA-p53 vector performance stood out, by demonstrating higher p53 expression levels (91.65 ± 2.82 U/mL vs. 74.75 ± 4.44 U/mL). After assuring the safety of both vectors by viability studies, such potential was confirmed by proliferation and apoptosis assays. These studies confirmed the mcDNA-p53 vector function toward cell cycle arrest and apoptosis in HPV-18-infected cervical cancer cells. Altogether, these results suggest that the mcDNA vector has a more promising and efficient role as a DNA vector than conventional pDNA, opening new investigation lines for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Dalinda Eusébio
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Margarida Almeida
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joel Marques Alves
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cláudio Jorge Maia
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - João António Queiroz
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
9
|
Purification of supercoiled p53-encoding plasmid using an arginine-modified macroporous support. J Chromatogr A 2020; 1618:460890. [DOI: 10.1016/j.chroma.2020.460890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
|