1
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
2
|
Bacterial Response to the Surface Aging of PLA Matrices Loaded with Active Compounds. Polymers (Basel) 2022; 14:polym14224976. [PMID: 36433103 PMCID: PMC9698402 DOI: 10.3390/polym14224976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The use of active components in biomaterials improves the properties of existing ones and makes it possible to obtain new devices with antibacterial properties that prevent infections after implantation, thus guaranteeing the success of the implant. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles were incorporated into polylactic acid (PLA) films to assess the extent to which progressive aging of the new surfaces resists bacterial colonization processes. For this purpose, the films' surface was characterized by contact angle measurements, ToF-SIMS and AFM, and adhesion, viability and biofilm growth of Staphylococcus epidermidis bacteria on these films were also evaluated. The results show that the inclusion of Mg and CTAB in PLA films changes their surface properties both before and after aging and also modifies bacterial adhesion on the polymer. Complete bactericidal activity is exhibited on non-degraded films and films with CTAB. This antibacterial behavior is maintained after degradation for three months in the case of films containing a higher amount of CTAB.
Collapse
|
3
|
Carcione D, Leccese G, Conte G, Rossi E, Intra J, Bonomi A, Sabella S, Moreo M, Landini P, Brilli M, Paroni M. Lack of Direct Correlation between Biofilm Formation and Antimicrobial Resistance in Clinical Staphylococcus epidermidis Isolates from an Italian Hospital. Microorganisms 2022; 10:1163. [PMID: 35744681 PMCID: PMC9230108 DOI: 10.3390/microorganisms10061163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.
Collapse
Affiliation(s)
- Davide Carcione
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Gabriella Leccese
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Gianmarco Conte
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Elio Rossi
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Jari Intra
- Clinical Chemistry Laboratory, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy;
| | - Alice Bonomi
- Unit of Biostatistics, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy;
| | - Simona Sabella
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Massimo Moreo
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Paolo Landini
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Matteo Brilli
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Moira Paroni
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| |
Collapse
|