1
|
D’Accolti M, Soffritti I, Mazziga E, Bini F, Bisi M, Volta A, Mazzacane S, Caselli E. A Sustainable Combined Approach to Control the Microbial Bioburden in the School Environment. Microorganisms 2025; 13:791. [PMID: 40284628 PMCID: PMC12029542 DOI: 10.3390/microorganisms13040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
The indoor microbiome is a dynamic ecosystem including pathogens that can impact human health. In this regard, the school environment represents the main living space of humans for many years, and an unhealthy environment can significantly condition students' health. School rooms can suffer from insufficient ventilation and the use of building materials that may favor pathogen contamination, mostly sanitized by conventional chemical-based methods, which can impact pollution, have temporary effects, and induce the selection of antimicrobial resistance (AMR) in persistent microbes. In the search for sustainable and effective methods to improve the healthiness of the classroom environment, a pre-post case-control study was performed in an Italian high school. Over a year, different interventions were sequentially placed and evaluated for their impact on bioburden and air quality, including the introduction of plants, a mechanical ventilation system, and probiotic-based sanitation (PBS) in substitution for chemical sanitation. Through continuous microbial monitoring of the enrolled school rooms, via culture-dependent and -independent methods, a remarkable bioburden level was detected at baseline (around 12,000 and 20,000 CFU/m2, before and after classes, respectively), composed mostly of Staphylococcus spp. and fungi. Some decrease in fungal contamination was observed following the introduction of plants. Still, the most significant decrease in pathogens and associated AMR was detected following the introduction of ventilation and PBS, which decreased pathogen level by >80% (p < 0.001) and AMR by up to 3 Log10 (p < 0.001) compared to controls. Collected data support the use of combined strategies to improve indoor microbial quality and confirm that PBS can effectively control bioburden and AMR spread not only in sanitary environments.
Collapse
Affiliation(s)
- Maria D’Accolti
- Section of Microbiology, Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (E.M.); (F.B.)
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Irene Soffritti
- Section of Microbiology, Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (E.M.); (F.B.)
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Eleonora Mazziga
- Section of Microbiology, Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (E.M.); (F.B.)
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Francesca Bini
- Section of Microbiology, Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (E.M.); (F.B.)
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Matteo Bisi
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Antonella Volta
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Sante Mazzacane
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (E.M.); (F.B.)
- CIAS Research Centre, University of Ferrara, 44122 Ferrara, Italy; (M.B.); (A.V.); (S.M.)
| |
Collapse
|
2
|
Ni J, Huang S, Liang Z, Chen Z, Zhang S, Li G, An T. Concentration, pathogenic composition, and exposure risks of bioaerosol in large indoor public environments: A comparative study of urban and suburban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177790. [PMID: 39615183 DOI: 10.1016/j.scitotenv.2024.177790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Biological contamination in larger indoor environments can lead to the outbreak of various infectious diseases. This study aimed to compare the pollution profiles and associated health risks of airborne microorganisms in different indoor settings between urban and suburban areas by culturing, sequencing, and toxicological evaluation. The results indicated that the average level of culturable bacteria was higher in urban areas (955 ± 259 CFU/m3) compared to suburban areas (850 ± 85 CFU/m3), with the highest concentrations found in the market (2170 ± 798 CFU/m3) and gymnasium (2010 ± 300 CFU/m3). Conversely, the total number of airborne bacteria was higher in classroom (2.09 × 105) and laboratory (1.95 × 105 copies/m3), likely due to the presence of viable but non-culturable cells. Additionally, the concentrations of 0.5-2.0 μm total particles were higher in the market and cafeteria. Dominant airborne genera included Acinetobacter and Pseudomonas for bacteria, Cladosporium and Aspergillus for fungi, as well as Geneviridae and Herpesviridae for viruses. Bacterial and viral diversity and richness were significantly higher in suburban areas compared to urban areas, with distinct viral communities observed in hospital. Cytotoxicity assays revealed lower viability of cells in response to bioaerosols from the library (52.3 %) and laboratory (54.5 %); while lower proliferation rates were found for the cells exposed to bioaerosol from gymnasium (5.4 %) and market (6.0 %), suggesting higher toxicity of these environments. Additionally, bioaerosol exposure may impair cellular innate immunity by increasing the expression of IL-6, IL-8, TNF-α, IFN-γ. Our findings provide valuable information for assessing and controlling bioaerosol-related health risks in indoor environments.
Collapse
Affiliation(s)
- Jiasheng Ni
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Simin Huang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Simeng Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Jabeen R, Kizhisseri MI, Mayanaik SN, Mohamed MM. Bioaerosol assessment in indoor and outdoor environments: a case study from India. Sci Rep 2023; 13:18066. [PMID: 37872255 PMCID: PMC10593752 DOI: 10.1038/s41598-023-44315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Exposure to bioaerosols has been associated with the occurrence of a variety of health impacts, including infectious illnesses, acute toxic effects, allergies, and cancer. This study aimed at evaluating airborne bacteria and fungi populations at different indoor and outdoor sites on a college campus in Bengaluru, India. Bioaerosol samples were collected using a two-stage Andersen air sampler; and isolates were identified using standard procedures. Six air samples and meteorological data were collected in March and April 2014 to examine the effects of temperature and relative humidity on bioaerosol concentration using linear regression modeling. Among all sites, the canteen showed the highest bioaerosol levels both indoors and outdoors. Specific bacterial identification was not possible, but gram staining and microscopic analysis helped to identify gram positive and gram negative bacteria. The most prevalent fungal species in the samples were Cladosporium, Aspergillus niger, Penicillium, Rhizopus, Fusarium, Mucor, and Alternaria. Due to the impact of weather conditions, such as temperature and relative humidity, the bioaerosol concentration varied greatly at each site according to the regression model. The indoor bioaerosol concentrations at all sites exceeded the values established by the American Industrial Hygiene Association (< 250 CFU/m3 for total fungi and < 500 CFU/m3 for total bacteria). Higher concentrations of bioaerosols may be attributed to the transportation of microbes from the ground surface to suspended particles, the release of microbes from the respiratory tract, higher rate of shredding of human skin cells, and many other factors.
Collapse
Affiliation(s)
- Raisa Jabeen
- Department of Environmental Engineering, China State Construction Engineering Corporation, Middle East L.L.C, Dubai, United Arab Emirates
| | - Mohamed Ibrahim Kizhisseri
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Gwenzi W, Shamsizadeh Z, Gholipour S, Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150154. [PMID: 34798728 DOI: 10.1016/j.scitotenv.2021.150154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Grzyb J, Pawlak K. Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56615-56627. [PMID: 34061267 PMCID: PMC8500874 DOI: 10.1007/s11356-021-14594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures.
Collapse
Affiliation(s)
- Jacek Grzyb
- Department of Microbiology and Biomonitoring, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland.
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Mickiewicza Ave 24/28, 30-059, Kraków, Poland
| |
Collapse
|
6
|
The Well-Being of Children in Nurseries Does Not Have to Be Expensive: The Real Costs of Maintaining Low Carbon Dioxide Concentrations in Nurseries. ENERGIES 2021. [DOI: 10.3390/en14082035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There are different standards and regulations outlining the requirements regarding building air quality as well as in nurseries. These requirements specify air stream supplies and carbon dioxide concentration levels, both of which ensure proper indoor air quality. Mechanical ventilation should be used to maintain acceptable carbon dioxide levels. This article analyses the use of ventilation equipped with decentralized units, which helps secure the well-being of children. This paper proposes and evaluates economically affordable ventilation units. An algorithm for selecting the size of the devices is described by the supplied air stream depending on the number of children present at the nursery. A method of transferring the investment costs related to the assembly of the given units to the parents is proposed. Air quality in terms of CO2 concentrations was based on the following levels: 750 ppm, 1000 ppm, 1500 ppm. This assessment also includes the investment costs resulting from device usage and the costs of electricity consumed by the fans. These results showed the additional costs that assure the air quality improvement do not have to be high (45 PLN/month, ~10 EUR/month) per child attending the nursery. A 3% tuition increase returns the investment costs on mechanical ventilation within four years.
Collapse
|