1
|
Mortazavy Beni H, Mortazavi H, Paul G. Relaxation and creep response of the alveolar lung to diagnosis and treatments for respiratory and lung disorders. Perfusion 2023; 38:1637-1643. [PMID: 36128762 DOI: 10.1177/02676591221128141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The lung Extracellular Matrix (ECM) contains a considerable part of the parenchymal cells. It contains three essential components: elastin and collagen within a proteoglycan (PG) viscoelastic network. Elastin provides the lung's elasticity property, a necessity for normal breathing, while collagen prepares structural support and strength, and PGs give stability and cushioning within tissue loading. Bacterial and viral respiratory diseases are dependent on changes in the ECM ingredients, which result in an alteration of the lung tissue strength. PURPOSE In the present study, this variation was investigated by changing the volume ratio of the ECM ingredients in the viscoelastic model. RESULTS As a result, the relaxation curves continuously declined by reducing the volume ratios of elastin, collagen, and PGs; subsequently, the lung stiffness decreased. Also, the Standard Linear Solid (SLS) model-based results demonstrated excellent accordance with empirical data with only minor deviations. The resting relaxation modulus and the creep modulus for the ECM tissue were 51 kPa and approximately 0.02 kPa, respectively, and the maximum total modulus of elasticity reached 121 kPa. CONCLUSIONS Moreover, this model demonstrates individual alveolar mechanical behaviours and adds another pathway to the generalized Kelvin-Voigt and Maxwell models in predicting the progress of lung diseases.
Collapse
Affiliation(s)
| | - Hamed Mortazavi
- Department of Biomedical Engineering, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Gunther Paul
- Australian Institute of Tropical Health and Medicine, James Cook University, Mackay, QLD, Australia
| |
Collapse
|
2
|
Hu Z, Dong J, Lou M, Zhang J, Ma R, Wang Y, Gong M, Wang B, Tong Z, Ren H, Zheng G, Zhang Y. Effect of different degrees of adenoid hypertrophy on pediatric upper airway aerodynamics: a computational fluid dynamics study. Biomech Model Mechanobiol 2023; 22:1163-1175. [PMID: 37256522 DOI: 10.1007/s10237-023-01707-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 02/22/2023] [Indexed: 06/01/2023]
Abstract
To improve the diagnostic accuracy of adenoid hypertrophy (AH) in children and prevent further complications in time, it is important to study and quantify the effects of different degrees of AH on pediatric upper airway (UA) aerodynamics. In this study, based on computed tomography (CT) scans of a child with AH, UA models with different degrees of obstruction (adenoidal-nasopharyngeal (AN) ratio of 0.9, 0.8, 0.7, and 0.6) and no obstruction (AN ratio of 0.5) were constructed through virtual surgery to quantitatively analyze the aerodynamic characteristics of UA with different degrees of obstruction in terms of the peak velocity, pressure drop (△P), and maximum wall shear stress (WSS). We found that two obvious whirlpools are formed in the anterior upper part of the pediatric nasal cavity and in the oropharynx, which is caused by the sudden increase in the nasal cross-section area, resulting in local flow separation and counterflow. In addition, when the AN ratio was ≥ 0.7, the airflow velocity peaked at the protruding area in the nasopharynx, with an increase 1.1-2.7 times greater than that in the nasal valve area; the △P in the nasopharynx was significantly increased, with an increase 1.1-6.8 times greater than that in the nasal cavity; and the maximum WSS of the posterior wall of the nasopharynx was 1.1-4.4 times larger than that of the nasal cavity. The results showed that the size of the adenoid plays an important role in the patency of the pediatric UA.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Jingliang Dong
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
- First Year College, Victoria University, Footscray Park Campus, Footscray, VIC, 3011, Australia
- School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Miao Lou
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Jingbin Zhang
- Department of Imaging, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruiping Ma
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Minjie Gong
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Botao Wang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Hongxian Ren
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Guoxi Zheng
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
3
|
How Nanoparticle Aerosols Transport through Multi-Stenosis Sections of Upper Airways: A CFD-DPM Modelling. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway stenosis is a global respiratory health problem that is caused by airway injury, endotracheal intubation, malignant tumor, lung aging, or autoimmune diseases. A precise understanding of the airflow dynamics and pharmaceutical aerosol transport through the multi-stenosis airways is vital for targeted drug delivery, and is missing from the literature. The object of this study primarily relates to behaviors and nanoparticle transport through the multi-stenosis sections of the trachea and upper airways. The combination of a CT-based mouth–throat model and Weibel’s model was adopted in the ANSYS FLUENT solver for the numerical simulation of the Euler–Lagrange (E-L) method. Comprehensive grid refinement and validation were performed. The results from this study indicated that, for all flow rates, a higher velocity was usually found in the stenosis section. The maximum velocity was found in the stenosis section having a 75% reduction, followed by the stenosis section having a 50% reduction. Increasing flow rate resulted in higher wall shear stress, especially in stenosis sections. The highest pressure was found in the mouth–throat section for all flow rates. The lowest pressure was usually found in stenosis sections, especially in the third generation. Particle escape rate was dependent on flow rate and inversely dependent on particle size. The overall deposition efficiency was observed to be significantly higher in the mouth–throat and stenosis sections compared to other areas. However, this was proven to be only the case for a particle size of 1 nm. Moreover, smaller nanoparticles were usually trapped in the mouth–throat section, whereas larger nanoparticle sizes escaped through the lower airways from the left side of the lung; this accounted for approximately 50% of the total injected particles, and 36% escaped from the right side. The findings of this study can improve the comprehensive understanding of airflow patterns and nanoparticle deposition. This would be beneficial in work with polydisperse particle deposition for treatment of comprehensive stenosis with specific drugs under various disease conditions.
Collapse
|