1
|
Lippa MN, Tarolli P, Straffelini E. Climate change impacts and the reshaping of Canadian viticulture. iScience 2025; 28:111941. [PMID: 40201418 PMCID: PMC11976484 DOI: 10.1016/j.isci.2025.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 01/29/2025] [Indexed: 04/10/2025] Open
Abstract
Shifting climate patterns across wine-growing areas of Ontario, British Columbia, Nova Scotia, and Quebec are driving the development of new viticultural potential within established Canadian wine regions. Changing trends of critical climatic variables and indices, such as near-surface temperature (NST) and growing degree days, indicate that growing conditions are changing. This research assesses NST and seasonal precipitation trends from 1994 to 2100 for Canadian viticulture, focusing on the primary established growing regions. Using multi-model CMIP6 spatial-temporal averages from the NEX-GDDP-CMIP6 dataset available on Google Earth Engine, this research aims to understand future NST and seasonal precipitation trends with climate scenarios SSP245 and SSP585 and discuss possible effects on viticulture on a near-term (2015-2050) and long-term (2050-2100) basis. Minimum, average, and maximum NST trends demonstrated statistically significant increases across all regions, with similar increasing precipitation trends across the growing season. Increasing trends, especially trends of extreme temperature, can all influence grape quality and, ultimately, wine quality. Outcomes suggest warmer growing climates, which may benefit wine producers, but the increasing frequency of extreme climate-change-related events such as drought, heatwaves, or extreme rainfall suggests potential future challenges that will require careful management.
Collapse
Affiliation(s)
- Massimiliano N. Lippa
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, 35020 Legnaro, Italy
| | - Paolo Tarolli
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, 35020 Legnaro, Italy
| | - Eugenio Straffelini
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
2
|
Dominguez DLE, Cirrincione MA, Deis L, Martínez LE. Impacts of Climate Change-Induced Temperature Rise on Phenology, Physiology, and Yield in Three Red Grape Cultivars: Malbec, Bonarda, and Syrah. PLANTS (BASEL, SWITZERLAND) 2024; 13:3219. [PMID: 39599428 PMCID: PMC11598131 DOI: 10.3390/plants13223219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Climate change has significant implications for agriculture, especially in viticulture, where temperature plays a crucial role in grapevine (Vitis vinifera) growth. Mendoza's climate is ideal for producing high-quality wines, but 21st-century climate change is expected to have negative impacts. This study aimed to evaluate the effects of increased temperature on the phenology, physiology, and yield of Malbec, Bonarda, and Syrah. A field trial was conducted over two seasons (2019-2020 and 2020-2021) in an experimental vineyard with an active canopy heating system (+2-4 °C). Phenological stages (budburst, flowering, fruit set, veraison, harvest), shoot growth (SG), number of shoots (NS), stomatal conductance (gs), chlorophyll content (CC), chlorophyll fluorescence (CF), and water potential (ψa) were measured. Additionally, temperature, relative humidity, light intensity, and canopy temperature were recorded. Heat treatment advanced all phenological stages by approximately two weeks, increased SG and NS, and reduced gs and ψa during the hottest months. CC and CF remained unaffected. The treatment also resulted in lower yields, reduced acidity, and increased °Brix in both seasons. Overall, rising temperatures due to climate change advance the phenological phases of Malbec, Syrah, and Bonarda, leading to lower yields, higher °Brix, and lower acidity, although physiological variables remained largely unchanged.
Collapse
Affiliation(s)
- Deolindo L. E. Dominguez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina; (D.L.E.D.); (M.A.C.); (L.D.)
- Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina
| | - Miguel A. Cirrincione
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina; (D.L.E.D.); (M.A.C.); (L.D.)
| | - Leonor Deis
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina; (D.L.E.D.); (M.A.C.); (L.D.)
- Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina
| | - Liliana E. Martínez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina; (D.L.E.D.); (M.A.C.); (L.D.)
- Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria, Mendoza 5507, Argentina
| |
Collapse
|
3
|
Hasanaliyeva G, Furiosi M, Rossi V, Caffi T. Cover crops lower the dispersal of grapevine foliar pathogens from the ground and contribute to early-season disease management. FRONTIERS IN PLANT SCIENCE 2024; 15:1498848. [PMID: 39588085 PMCID: PMC11586201 DOI: 10.3389/fpls.2024.1498848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Currently, fungicides are widely used to control grapevine foliar diseases. This study explored the possibility of decreasing the use of fungicides to control these diseases using cover crops in the inter-row of vineyards. In small-scale experiments, we found that cover crops (namely horseradish Armoracia rusticana) were able to (i) reduce the numbers of airborne conidia of Botrytis cinerea (originating from an inoculum source above the soil) escaping the cover canopy by >85% with respect to the base soil and (ii) reduce the number of raindrops impacting the soil by 46%-74%, depending on the cover crop height and rain-originated splash droplets that escaped from the ground by 75%-95%, which reduced splash-borne inoculum. In two organic vineyards, for 2 years, fall- (mixture of Lolium perenne, Onobrychis viciifolia, and Trifolium repens) or spring-sown (a mixture of Vicia sativa and Sinapis sp.) cover crops could significantly delay (by 14-30 days) and reduce (till >90%) the development of downy and powdery mildew epidemics. This effect was more evident in plots untreated with fungicides than in treated plots. Cover crops also delayed the onset of epidemics depending on the type of cover crop and disease. Cover crops did not negatively affect grape yield and quality. Overall, the results showed that the introduction of cover crops in vineyard management can significantly contribute to disease control by lowering the load from ground to grapevine canopies of pathogen inocula, delaying disease onset, and reducing diseases severity during the season.
Collapse
Affiliation(s)
- Gultekin Hasanaliyeva
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Furiosi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center for Plant Health Modelling (PHeM), Department of Sustainable Crop Production, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center for Plant Health Modelling (PHeM), Department of Sustainable Crop Production, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center for Plant Health Modelling (PHeM), Department of Sustainable Crop Production, Piacenza, Italy
| |
Collapse
|
4
|
Frenzke L, Röckel F, Wenke T, Schwander F, Grützmann K, Naumann J, Zakrzewski F, Heinekamp T, Maglione M, Wenke A, Kögler A, Zyprian E, Dahl A, Förster F, Töpfer R, Wanke S. Genotyping-by-sequencing-based high-resolution mapping reveals a single candidate gene for the grapevine veraison locus Ver1. PLANT PHYSIOLOGY 2024; 196:244-260. [PMID: 38743690 PMCID: PMC11376399 DOI: 10.1093/plphys/kiae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety "Calardis Musqué" and the late-ripening variety "Villard Blanc". Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 yrs. Through locus-specific marker enrichment and recombinant screening of ∼1,000 additional genotypes, we refined the originally postulated 5-mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal "Pinot" variant first mentioned in the seventeenth century. "Pinot Precoce Noir" passed this allele over "Madeleine Royale" to the maternal grandparent "Bacchus Weiss" and, ultimately, to the maternal parent "Calardis Musqué". Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology.
Collapse
Affiliation(s)
- Lena Frenzke
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Franco Röckel
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | | | - Florian Schwander
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | | | - Julia Naumann
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | | | - Tom Heinekamp
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Maria Maglione
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Anja Wenke
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eva Zyprian
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Franz Förster
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Reinhard Töpfer
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Stefan Wanke
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Botanik und Molekulare Evolutionsforschung, Senckenberg Forschungsinstitut und Naturmuseum, 60325 Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Allegro G, Valentini G, Sangiorgio D, Pastore C, Filippetti I. Zeolite application and irrigation during ripening reduced berry sunburn damage and yield loss in cv. Sangiovese ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1427366. [PMID: 39129763 PMCID: PMC11310163 DOI: 10.3389/fpls.2024.1427366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024]
Abstract
Climate change poses significant challenges to the grapevine cultivation for wine production. In the last years, the occurrence of extreme weather events such as intense heat waves and prolonged period of drought increased sunburn damage with negative consequences to yield and berry composition. Short-term adaptation strategies are urgently needed to mitigate these effects. In this light, our study aimed to evaluate the efficacy of zeolite application on the canopy and irrigation during ripening on sunburn damage, yield, and berry composition in cv. Sangiovese (Vitis vinifera L.). Over 3 years (2021-2023), canopy management and irrigation treatments were arranged in a strip-plot design. Canopy management treatments included leaf removal on the cluster zone, with and without zeolite application, and no defoliated control; irrigation treatments comprised irrigation from berry softening and no irrigation. Both zeolite application and irrigation reduced sunburn damage, thus mitigating yield loss. Regarding berry composition, zeolite application did not alter the main parameters whereas irrigation led to reductions in sugar and anthocyanin concentrations. These findings suggest that zeolite application and irrigation during ripening represent promising and cost-effective solutions for grape growers facing climate change-induced challenges. However, further studies are necessary to optimize timing of irrigation to avoid detrimental effects on anthocyanin accumulation.
Collapse
Affiliation(s)
| | | | - Daniela Sangiorgio
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
6
|
Tscholl S, Candiago S, Marsoner T, Fraga H, Giupponi C, Egarter Vigl L. Climate resilience of European wine regions. Nat Commun 2024; 15:6254. [PMID: 39048582 PMCID: PMC11269675 DOI: 10.1038/s41467-024-50549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Over centuries, European vintners have developed a profound knowledge about grapes, environment, and techniques that yield the most distinguishable wines. In many regions, this knowledge is reflected in the system of wine geographical indications (GI), but climate change is challenging this historical union. Here, we present a climate change vulnerability assessment of 1085 wine GIs across Europe and propose climate-resilient development pathways using an ensemble of biophysical and socioeconomic indicators. Results indicate that wine regions in Southern Europe are among the most vulnerable, with high levels also found in Eastern Europe. Vulnerability is influenced by the rigidity of the GI system, which restricts grape variety diversity and thus contributes to an increased sensitivity to climate change. Contextual deficiencies, such as limited socioeconomic resources, may further contribute to increased vulnerability. Building a climate-resilient wine sector will require rethinking the GI system by allowing innovation to compensate for the negative effects of climate change.
Collapse
Affiliation(s)
- Simon Tscholl
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100, Bozen/Bolzano, Italy.
- Department of Ecology, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria.
| | - Sebastian Candiago
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100, Bozen/Bolzano, Italy
- Department of Economics, Ca' Foscari University of Venice, S. Giobbe 873, 30121, Venezia, Italy
- Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Thomas Marsoner
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100, Bozen/Bolzano, Italy
| | - Helder Fraga
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Carlo Giupponi
- Department of Economics, Ca' Foscari University of Venice, S. Giobbe 873, 30121, Venezia, Italy
| | - Lukas Egarter Vigl
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100, Bozen/Bolzano, Italy
| |
Collapse
|
7
|
Costa JM, Egipto R, Aguiar FC, Marques P, Nogales A, Madeira M. The role of soil temperature in mediterranean vineyards in a climate change context. FRONTIERS IN PLANT SCIENCE 2023; 14:1145137. [PMID: 37229125 PMCID: PMC10205021 DOI: 10.3389/fpls.2023.1145137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023]
Abstract
The wine sector faces important challenges related to sustainability issues and the impact of climate change. More frequent extreme climate conditions (high temperatures coupled with severe drought periods) have become a matter of concern for the wine sector of typically dry and warm regions, such as the Mediterranean European countries. Soil is a natural resource crucial to sustaining the equilibrium of ecosystems, economic growth and people's prosperity worldwide. In viticulture, soils have a great influence on crop performance (growth, yield and berry composition) and wine quality, as the soil is a central component of the terroir. Soil temperature (ST) affects multiple physical, chemical and biological processes occurring in the soil as well as in plants growing on it. Moreover, the impact of ST is stronger in row crops such as grapevine, since it favors soil exposition to radiation and favors evapotranspiration. The role of ST on crop performance remains poorly described, especially under more extreme climatic conditions. Therefore, a better understanding of the impact of ST in vineyards (vine plants, weeds, microbiota) can help to better manage and predict vineyards' performance, plant-soil relations and soil microbiome under more extreme climate conditions. In addition, soil and plant thermal data can be integrated into Decision Support Systems (DSS) to support vineyard management. In this paper, the role of ST in Mediterranean vineyards is reviewed namely in terms of its effect on vines' ecophysiological and agronomical performance and its relation with soil properties and soil management strategies. The potential use of imaging approaches, e.g. thermography, is discussed as an alternative or complementary tool to assess ST and vertical canopy temperature profiles/gradients in vineyards. Soil management strategies to mitigate the negative impact of climate change, optimize ST variation and crop thermal microclimate (leaf and berry) are proposed and discussed, with emphasis on Mediterranean systems.
Collapse
Affiliation(s)
- J. Miguel Costa
- Linking Landscape, Environment, Agriculture and Food, LEAF Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
| | - Ricardo Egipto
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, Dois Portos, Portugal
| | - Francisca C. Aguiar
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
- CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Marques
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Amaia Nogales
- Linking Landscape, Environment, Agriculture and Food, LEAF Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
| | - Manuel Madeira
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
- CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Daccak D, Lidon FC, Coelho ARF, Luís IC, Marques AC, Pessoa CC, Brito MDG, Kullberg JC, Ramalho JC, Silva MJ, Rodrigues AP, Campos PS, Pais IP, Semedo JN, Silva MM, Legoinha P, Galhano C, Simões M, Pessoa MF, Reboredo FH. Assessment of Physicochemical Parameters in Two Winegrapes Varieties after Foliar Application of ZnSO 4 and ZnO. PLANTS (BASEL, SWITZERLAND) 2023; 12:1426. [PMID: 37050051 PMCID: PMC10097101 DOI: 10.3390/plants12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
One-third of the world's population is suffering from "hidden hunger" due to micronutrient deficiency. Zinc is acquired through diet, leading its deficiency to the development of disorders such as retarded growth, anorexia, infections, and hypogeusia. Accordingly, this study aimed to develop an agronomic workflow for Zn biofortification on two red winegrapes varieties (cv. Castelão and Syrah) and determine the physicochemical implications for winemaking. Both varieties produced in Setúbal (Portugal) were submitted to four foliar applications of ZnSO4 or ZnO (900 and 1350 g ha-1, respectively), during the production cycle. At harvest, Zn biofortification reached a 4.3- and 2.3-fold increase with ZnO 1350 g ha-1 in Castelão and Syrah, respectively (although, with ZnSO4 1350 g ha-1 both varieties revealed an increase in Zn concentration). On a physiological basis, lower values of NDVI were found in the biofortified grapes, although not reflected in photosynthetic parameters with cv. Syrah shows even a potential benefit with the use of Zn fertilizers. Regarding physical and chemical parameters (density, total soluble solids, dry weight, and color), relative to the control no significant changes in both varieties were observed, being suitable for winemaking. It was concluded that ZnSO4 and ZnO foliar fertilization efficiently increased Zn concentration on both varieties without a negative impact on quality, but cv. Castelão showed a better index of Zn biofortification and pointed to a potentially higher quality for winemaking.
Collapse
Affiliation(s)
- Diana Daccak
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Fernando C. Lidon
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Ana Rita F. Coelho
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Inês Carmo Luís
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Ana Coelho Marques
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Cláudia Campos Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Maria da Graça Brito
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - José Carlos Kullberg
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - José C. Ramalho
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria José Silva
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Paula Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Paula Scotti Campos
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Paulo Legoinha
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Carlos Galhano
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Manuela Simões
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Maria Fernanda Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| | - Fernando H. Reboredo
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.C.L.); (A.R.F.C.); (I.C.L.); (A.C.M.); (C.C.P.); (M.d.G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (M.F.P.); (F.H.R.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (M.J.S.); (P.S.C.); (I.P.P.); (J.N.S.)
| |
Collapse
|
9
|
Botton A, Girardi F, Ruperti B, Brilli M, Tijero V, Eccher G, Populin F, Schievano E, Riello T, Munné-Bosch S, Canton M, Rasori A, Cardillo V, Meggio F. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3574. [PMID: 36559686 PMCID: PMC9788187 DOI: 10.3390/plants11243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Francesco Girardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Veronica Tijero
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Populin
- Unit of Fruit Crop Genetics and Breeding, Research and Innovation Centre—CRI, Edmund Mach Foundation—FEM, Via E. Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08017 Barcelona, Spain
| | - Monica Canton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
10
|
Leaf Eco-Physiological Profile and Berries Technological Traits on Potted Vitis vinifera L. cv Pinot Noir Subordinated to Zeolite Treatments under Drought Stress. PLANTS 2022; 11:plants11131735. [PMID: 35807687 PMCID: PMC9268851 DOI: 10.3390/plants11131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
In Mediterranean areas, extreme weather conditions such as high diurnal temperatures during the growing season could tweak vine physiology and metabolism, affecting grapes’ quality. Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water resources of the vineyards, forcing the winemakers to continuously face an increasing water demand in recent decades, which has led them to non-sustainable choices for ambient (i.e., irrigation solutions). The aspiration of this experiment was to explore the effects of zeolite treatments (clinoptilolite type) on Vitis vinifera L. (potted vines) ecophysiology and berry metabolism under two water regimes. The plants were subordinated to two different predawn water potential regimes (0 ≤ ΨPD ≤ −0.4, WWCtrl and −0.4 ≤ ΨPD ≤ −0.9, WSCtrl), both associated with zeolite treatments (WWt and WSt). Gas exchanges, predawn and midday stem water potential, chlorophyll fluorescence, temperature, and relative water content were overseen on leaves at veraison, maturation, and harvest. Technological analyses were performed on the berries. Moreover, data were analyzed with principal component analysis and Pearson’s correlations. This experiment supplies new evidence that zeolite applications could impact both physiological profiles (higher photosynthesis and stomatal conductance) as well as berry skin metabolism (sugar and size) of vines, giving a better skill to counteract low water availability during the season and maintaining a better hydraulic conductivity.
Collapse
|