1
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
2
|
Long-Term Observations of Atmospheric Speciated Mercury at a Coastal Site in the Northern Gulf of Mexico during 2007–2018. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atmospheric mercury species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM)), trace pollutants (O3, SO2, CO, NO, NOY, and black carbon), and meteorological parameters have been continuously measured since 2007 at an Atmospheric Mercury Network (AMNet) site that is located on the northern coast of the Gulf of Mexico in Moss Point, Mississippi. For the data that were collected between 2007 and 2018, the average concentrations and standard deviations are 1.39 ± 0.22 ng m−3 for GEM, 5.1 ± 10.2 pg m−3 for GOM, 5.9 ± 13.0 pg m−3 for PBM, and 309 ± 407 ng m−2 wk−1 for mercury wet deposition, with interannual trends of −0.009 ng m−3 yr−1 for GEM, −0.36 pg m−3 yr−1 for GOM, 0.18 pg m−3 yr−1 for PBM, and 2.8 ng m−2 wk−1 yr−1 for mercury wet deposition. The diurnal variation of GEM shows lower concentrations in the early morning due to GEM depletion, likely due to plant uptake in high humidity events and slight elevation during the day, likely due to downward mixing to the surface of higher concentrations of GEM in the air aloft. The seasonal variation of GEM shows higher levels in winter and spring and lower levels in summer and fall. Diurnal variations of both GOM and PBM show broad peaks in the afternoon likely due to the photochemical oxidation of GEM. Seasonally, PBM measurements exhibit higher levels in winter and early spring and lower levels in summer with rising levels in fall, while GOM measurements show high levels in late spring/early summer and late fall and low levels in winter. The seasonal variation of mercury wet deposition shows higher values in summer and lower values in winter, due to larger rainfall amounts in summer than in winter. As expected, anticorrelation between mercury wet deposition and the sum of GOM and PBM, but positive correlation between mercury wet deposition and rainfall were observed. Correlation among GOM, ozone, and SO2 suggests possible different GOM sources: direct emissions and photochemical oxidation of GEM, with the possible influence of boundary layer dynamics and seasonal variability. This study indicates that the monitoring site experiences are impacted from local and regional mercury sources as well as large scale mercury cycling phenomena.
Collapse
|
3
|
Comparison of Atmospheric Mercury Speciation at a Coastal and an Urban Site in Southeastern Texas, USA. ATMOSPHERE 2020. [DOI: 10.3390/atmos11010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sixteen months of continuous measurements and the analysis of atmospheric mercury (gaseous elemental mercury GEM, gaseous oxidized mercury GOM, and particulate bound mercury PBM) under urban and coastal settings were conducted in Southeastern Texas. At the urban site, the GEM mean mixing ratio was 185 ppqv, 5%–10% higher than the Northern Hemisphere GEM background level. GOM and PBM mixing ratios were as much as six times higher than their background level. The coastal site GEM mean mixing ratio was 165 ppqv, higher than other coastal sites located in the Northern Hemisphere. GOM and PBM mean mixing ratios at the coastal site were 0.75 ppqv and 0.58 ppqv. The urban site had a higher frequency of high mercury events (>300 ppqv) compared to the coastal site. The diurnal patterns were found for both sites: In the urban environment, GEM accumulated to the maximum mixing ratio just after sunrise and decreased to the minimum mixing ratio in late afternoon. In the coastal environment, GEM decreased at night reaching its minimum mixing ratio before sunrise. The relationship between atmospheric mercury species and meteorological parameters was investigated. An examination of the relationship between atmospheric mercury species and key trace gases was conducted as well, showing that the concurrence of GEM, CO2, CO, CH4, and SO2 maximum mixing ratios was notable and provided evidence they may originate from the same emission source. The coastal site was at times influenced by polluted air from urban Houston and the cleaner Gulf of Mexico marine air at other times.
Collapse
|
4
|
Walsh JJ, Lenes JM, Weisberg RH, Zheng L, Hu C, Fanning KA, Snyder R, Smith J. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs. MARINE POLLUTION BULLETIN 2017; 116:9-40. [PMID: 28111002 DOI: 10.1016/j.marpolbul.2016.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine.
Collapse
Affiliation(s)
- J J Walsh
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States.
| | - J M Lenes
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - R H Weisberg
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - L Zheng
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - C Hu
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - K A Fanning
- College of Marine Science, University of South Florida, St. Petersberg, FL 33701, United States
| | - R Snyder
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA 23480, United States
| | - J Smith
- Department of Radiology, School of Medicine, University of Alabama, Birmingham, AL 35294, United States
| |
Collapse
|
5
|
Hong Y, Chen J, Deng J, Tong L, Xu L, Niu Z, Yin L, Chen Y, Hong Z. Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:259-268. [PMID: 27431698 DOI: 10.1016/j.envpol.2016.06.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Measurement of atmospheric mercury speciation was conducted in a coastal city of the Yangtze River Delta, China from July 2013 to January 2014, in conjunction with air pollutants and meteorological parameters. The mean concentrations of gaseous elemental mercury (GEM), particulate bound mercury (HgP) and reactive gaseous mercury (RGM) were 3.26 ± 1.63 ng m-3, 659 ± 931 pg m-3, and 197 ± 246 pg m-3, respectively. High percentages of HgP during haze days were found, due to the increase in direct emissions and gas-particle partitioning of RGM. The average gas-particle partitioning coefficients (Kp) during moderate or severe haze days (PM2.5 > 150 μg m-3) were obviously decreased. GEM and HgP were positively correlated with PM2.5, SO2, NO2 and CO, suggesting a significant contribution of anthropogenic sources. Elevated HgP concentrations in cold seasons and in the morning were observed while RGM exhibited different seasonal and diurnal pattern. The ratio of HgP/SO2 and Pearson correlation analysis suggested that coal combustion was the main cause of increasing atmospheric Hg concentrations. The monitoring site was affected by local, regional and interregional sources. The back trajectory analysis suggested that air mass from northwest China and Huabei Plain contributed to elevated atmospheric Hg in winter and autumn, while southeast China with clean air masses were the major contributor in summer.
Collapse
Affiliation(s)
- Youwei Hong
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China; State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai, 200233, PR China
| | - Jinsheng Chen
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China.
| | - Junjun Deng
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China
| | - Lei Tong
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China
| | - Lingling Xu
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China
| | - Zhenchuan Niu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Liqian Yin
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China
| | - Yanting Chen
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, PR China
| | - Zhenyu Hong
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|