1
|
Morino Y, Chatani S, Fujitani Y, Tanabe K, Murphy BN, Jathar SH, Takahashi K, Sato K, Kumagai K, Saito S. Emissions of Condensable Organic Aerosols from Stationary Combustion Sources over Japan. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 289:119319. [PMID: 40012955 PMCID: PMC11864277 DOI: 10.1016/j.atmosenv.2022.119319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Treatment of condensable particulate matter (CPM) is key for accurate simulation of atmospheric particulate matter (PM), because conventional stationary combustion source emission surveys do not measure CPM in many countries. This study updates previously estimated CPM emissions from stationary combustion sources in Japan by considering the relationship between the CPM fraction and filterable PM (FPM) concentrations for individual sources rather than using a uniform CPM/FPM ratio for all sources. As a result, the total emissions ratio of condensable organic aerosol (OA) and filterable PM2.5 (OA CPM ∕ PM 2.5 FPM ) from stationary combustion sources, based on this update, changes from ~2.0 to 0.20, and the estimated concentrations of condensable OA, averaged over winter and over summer, changes from up to 3 μg m-3 to up to 0.2 μg m-3. The normalized mean bias for concentration of the simulated organic carbon (OC) in winter changes from -78% ~ -9% to -83% ~ -28%), although the proportion of modern carbon in total carbon is better estimated. The CPM contribution is likely to be overestimated when the source-dependent relationship between the CPM/FPM ratio and FPM concentration is not considered. Thus, accurate knowledge of the CPM/FPM ratio, particularly for sources with high FPM concentrations, is critical to improve CPM emission estimation.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Satoru Chatani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Shantanu H. Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Katsuyuki Takahashi
- Japan Environmental Sanitation Center, 10-6 Yotsuyakami-Cho, Kawasaki, Kanagawa 210-0828, Japan
| | - Kei Sato
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kimiyo Kumagai
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| |
Collapse
|
2
|
Wróblewska K, Jeong BR. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:110. [PMID: 34603905 PMCID: PMC8475335 DOI: 10.1186/s12302-021-00547-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/22/2021] [Indexed: 05/10/2023]
Abstract
Air pollution is regarded as an increasingly threatening, major environmental risk for human health. Seven million deaths are attributed to air pollution each year, 91% of which is due to particulate matter. Vegetation is a xenobiotic means of removing particulate matter. This review presents the mechanisms of PM capture by plants and factors that influence PM reduction in the atmosphere. Vegetation is ubiquitously approved as a PM removal solution in cities, taking various forms of green infrastructure. This review also refers to the effectiveness of plant exploitation in GI: trees, grasslands, green roofs, living walls, water reservoirs, and urban farming. Finally, methods of increasing the PM removal by plants, such as species selection, biodiversity increase, PAH-degrading phyllospheric endophytes, transgenic plants and microorganisms, are presented.
Collapse
Affiliation(s)
- Katarzyna Wróblewska
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828 South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
3
|
Increases in Biogenic Volatile Organic Compound Concentrations Observed after Rains at Six Forest Sites in Non-Summer Periods. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since biogenic volatile organic compounds (BVOCs) are important precursors of ozone, the monitoring of the BVOC concentration distributions is needed. In general, forest BVOC concentrations increase in summer as well as in other seasons. This study aims to detect temporally sporadic increases in BVOC concentrations in the non-summer months and to analyze the occurring climatic conditions. Using a uniform sampling system and shared gas chromatography–mass spectrometry, the concentrations of isoprene and monoterpenes in six Japanese forests were observed approximately once a month for 3 years. Using the observed data, the relations between the BVOC concentration increases and meteorological factors were evaluated. Twenty instances of temporal increases in BVOC concentrations were observed. These mainly occurred in spring for isoprene and in autumn for monoterpenes. Most of the increases in the non-summer months were observed after a rainfall event, when the daily temperature range was large, suggesting that wind, rain, and a rapid diurnal temperature rise could be factors in the non-summer months. Thus, the network monitoring of BVOC concentrations might be effective for understanding the effects of factors other than temperature, and the mechanisms and frequency of the temporal increases, on the BVOC concentrations in various forests.
Collapse
|
4
|
Seasonal Changes in Interclone Variation Following Ozone Exposure on Three Major Gene Pools: An Analysis of Cryptomeria Japonica Clones. ATMOSPHERE 2019. [DOI: 10.3390/atmos10110643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, there has been a continuous increase in the concentration of tropospheric ozone in urban forests in Japan. Since monoterpenes are precursors to ozone, we need to evaluate the effects of ozone exposure on all tree species that are considered to be sources of monoterpenes. Cryptomeria japonica, which is the most widely planted afforestation tree, is classified into three different gene pools. However, the interclone variation for seasonal changes in the ozone exposure effect has not been evaluated. Thus, free-air ozone enhancement experiments were conducted using three representative clones of C. japonica in the summer and winter. After exposure to twice the ozone concentration in the ambient atmosphere, the effect on the monoterpene emission rate was found to be considerably different among the clones and for the different seasons. The monoterpene emission rate after ozone exposure increased in winter and summer in the native clones (Donden and Yakushima) in the snow area and heavy rain area, respectively. Since monoterpenes are antibacterial substances, each clone adapted sensitivity to stress during each season upon considerable damage. These results suggest that not only differences between tree species but also differences between clones are important for evaluating seasonal variation characteristics after ozone exposure.
Collapse
|
5
|
Differences in Model Performance and Source Sensitivities for Sulfate Aerosol Resulting from Updates of the Aqueous- and Gas-Phase Oxidation Pathways for a Winter Pollution Episode in Tokyo, Japan. ATMOSPHERE 2019. [DOI: 10.3390/atmos10090544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the Japanese intercomparison study, Japan’s Study for Reference Air Quality Modeling (J-STREAM), it was found that wintertime SO42– concentrations were underestimated over Japan with the Community Multiscale Air Quality (CMAQ) modeling system. Previously, following two development phases, model performance was improved by refining the Fe- and Mn-catalyzed oxidation pathways and by including an additional aqueous-phase pathway via NO2 oxidation. In a third phase, we examined a winter haze period in December 2016, involving a gas-phase oxidation pathway whereby three stabilized Criegee intermediates (SCI) were incorporated into the model. We also included options for a kinetic mass transfer aqueous-phase calculation. According to statistical analysis, simulations compared well with hourly SO42– observations in Tokyo. Source sensitivities for four domestic emission sources (transportation, stationary combustion, fugitive VOC, and agricultural NH3) were investigated. During the haze period, contributions from other sources (overseas and volcanic emissions) dominated, while domestic sources, including transportation and fuel combustion, played a role in enhancing SO42– concentrations around Tokyo Bay. Updating the aqueous phase metal catalyzed and NO2 oxidation pathways lead to increase contribution from other sources, and the additional gas phase SCI chemistry provided a link between fugitive VOC emission and SO42– concentration via changes in O3 concentration.
Collapse
|
6
|
Urban Trees and Their Impact on Local Ozone Concentration—A Microclimate Modeling Study. ATMOSPHERE 2019. [DOI: 10.3390/atmos10030154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Climate sensitive urban planning involves the implementation of green infrastructure as one measure to mitigate excessive heat in urban areas. Depending on thermal conditions, certain trees tend to emit more biogenic volatile organic compounds, which act as precursors for ozone formation, thus hampering air quality. Combining a theoretical approach from a box model analysis and microscale modeling from the microclimate model ENVI-met, we analyze this relationship for a selected region in Germany and provide the link to air quality prediction and climate sensitive urban planning. A box model study was conducted, indicating higher ozone levels with higher isoprene concentration, especially in NO-saturated atmospheres. ENVI-met sensitivity studies showed that different urban layouts strongly determine local isoprene emissions of vegetation, with leaf temperature, rather than photosynthetic active radiation, being the dominant factor. The impact of isoprene emission on the ozone in complex urban environments was simulated for an urban area for a hot summer day with and without isoprene. A large isoprene-induced relative ozone increase was found over the whole model area. On selected hot spots we find a clear relationship between urban layout, proximity to NOx emitters, tree-species-dependent isoprene emission capacity, and increases in ozone concentration, rising up to 500% locally.
Collapse
|
7
|
de Blas M, Ibáñez P, García JA, Gómez MC, Navazo M, Alonso L, Durana N, Iza J, Gangoiti G, de Cámara ES. Summertime high resolution variability of atmospheric formaldehyde and non-methane volatile organic compounds in a rural background area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:862-877. [PMID: 30096675 DOI: 10.1016/j.scitotenv.2018.07.411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/21/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
On rural background areas atmospheric formaldehyde (HCHO) is important for its abundance and chemical reactivity, directly linked to the tropospheric ozone formation processes. HCHO is also toxic and carcinogenic to humans. Atmospheric HCHO was continuously measured in summer 2016 during 81 days (N = 6722, average: 1.42 ppbv) in a rural background area in Northern Spain, Valderejo Natural Park (VNP) using a Hantzsch fluorimetric system. To better characterize the photochemical processes the database was completed with hourly measurements of 63 Non-Methane Hydrocarbons (NMHC) performed by gas chromatography and other common atmospheric pollutants and meteorological parameters. HCHO mixing ratios were highly correlated with ozone and isoprene. Cloudy and rainy days, with low temperature and radiation, led to low HCHO mixing ratios, with maxima (<2 ppbv) registered around 14 UTC. On days with increased radiation and temperature HCHO maxima occurred slightly later (<6 ppbv, ≈16:00 UTC). During clear summer days with high temperature and radiation, two HCHO peaks were registered daily, one synchronized with the radiation maximum (≈3-4 ppbv, ≈13:00 UTC) and an absolute maximum (<10 ppbv, ≈18:00 UTC), associated with the addition of HCHO coming into VNP due to inbound transport of old polluted air masses. In the ozone episode studied, the processes of accumulation and recharge of ozone and of HCHO ran in parallel, leading to similar daily patterns of variation. Finally, HCHO mixing ratios measured in VNP were compared with other measurements at rural, forested, and remote sites all over the world, obtaining similar values.
Collapse
Affiliation(s)
- Maite de Blas
- Faculty of Engineering - Bilbao, University of the Basque Country UPV/EHU, Spain.
| | - Pablo Ibáñez
- Faculty of Engineering - Bilbao, University of the Basque Country UPV/EHU, Spain
| | - Jose Antonio García
- Faculty of Engineering - Bilbao, University of the Basque Country UPV/EHU, Spain
| | - Maria Carmen Gómez
- Faculty of Engineering - Bilbao, University of the Basque Country UPV/EHU, Spain
| | - Marino Navazo
- Faculty Engineering of Vitoria-Gasteiz, University of the Basque Country UPV/EHU, Spain
| | - Lucio Alonso
- Faculty of Engineering - Bilbao, University of the Basque Country UPV/EHU, Spain
| | - Nieves Durana
- Faculty Engineering of Vitoria-Gasteiz, University of the Basque Country UPV/EHU, Spain
| | - Jon Iza
- Faculty Engineering of Vitoria-Gasteiz, University of the Basque Country UPV/EHU, Spain
| | - Gotzon Gangoiti
- Faculty of Engineering - Bilbao, University of the Basque Country UPV/EHU, Spain
| | | |
Collapse
|
8
|
Model Performance Differences in Sulfate Aerosol in Winter over Japan Based on Regional Chemical Transport Models of CMAQ and CAMx. ATMOSPHERE 2018. [DOI: 10.3390/atmos9120488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfate aerosol (SO42−) is a major component of particulate matter in Japan. The Japanese model intercomparison study, J-STREAM, found that although SO42− is well captured by models, it is underestimated during winter. In the first phase of J-STREAM, we refined the Fe- and Mn-catalyzed oxidation and partly improved the underestimation. The winter haze in December 2016 was a target period in the second phase. The results from the Community Multiscale Air Quality (CMAQ) and Comprehensive Air quality Model with eXtentions (CAMx) regional chemical transport models were compared with observations from the network over Japan and intensive observations at Nagoya and Tokyo. Statistical analysis showed both models satisfied the suggested model performance criteria. CMAQ sensitivity simulations explained the improvements in model performance. CMAQ modeled lower SO42− concentrations than CAMx, despite increased aqueous oxidation via the metal catalysis pathway and NO2 reaction in CMAQ. Deposition explained this difference. A scatter plot demonstrated that the lower SO42− concentration in CMAQ than in CAMx arose from the lower SO2 concentration and higher SO42− wet deposition in CMAQ. The dry deposition velocity caused the difference in SO2 concentration. These results suggest the importance of deposition in improving our understanding of ambient concentration behavior.
Collapse
|