1
|
Toprakçı İ, Cosgun G, Balci-Torun F, Torun M, Şahin S. Preservation of active components in olive leaf extract by spray drying method in biodegradable polymers: Optimization, in vitro gastrointestinal digestion and application. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1757-1770. [PMID: 36929214 DOI: 10.1002/pca.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Encapsulation of the bioactive ingredients in biodegradable and edible polymers is an alternative novel application method to keep these kind of natural products stable. OBJECTIVE The purpose is to optimize the encapsulation system of olive leaf extract by spray drying method, and to apply the products into a model food. METHODS Olive leaf extract was encapsulated in arabic gum/maltodextrin blend by spray drying method. Combined design approach under I-optimal design type was used to optimize the system. Characterisation studies under moisture content, water activity, solubility, bulk density, tapped density, Carr index, particle size distribution, powder morphology and glass transition temperature were applied to the microparticles obtained under optimum conditions. The bioavailability of the encapsulated active material was tested by in vitro gastrointestinal digestion. Furthermore, microparticles produced under optimum conditions were also evaluated for a potential functional food application. RESULTS The optimum conditions were achieved by arabic gum/maltodextrin (3.7:6.3) with 10% (w/v) in the mixture of wall material and active material under 165.5°C to achieve maximum encapsulation efficiency (86.92%), encapsulation yield (71.32%) and antioxidant activity (5.74 mg Trolox equivalent antioxidant capacity/g dry microparticle). CONCLUSIONS Olive leaf extract encapsulated in arabic gum/maltodextrin may be a good alternative additive to prevent the lipid oxidation in fat-containing food products as well as improvement of the product quality by functional properties.
Collapse
Affiliation(s)
- İrem Toprakçı
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Gulderen Cosgun
- Faculty of Engineering, Food Engineering Department, Akdeniz University, Antalya, Türkiye
| | - Ferhan Balci-Torun
- Faculty of Tourism, Department of Gastronomy and Culinary Art, Akdeniz University, Antalya, Türkiye
| | - Mehmet Torun
- Faculty of Engineering, Food Engineering Department, Akdeniz University, Antalya, Türkiye
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
2
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
3
|
‘Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023; 28:molecules28062631. [PMID: 36985603 PMCID: PMC10052168 DOI: 10.3390/molecules28062631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Correspondence: ; Tel.: +006-088-320000 (ext. 8713); Fax: +006-088-320993
| | | | | |
Collapse
|
4
|
Leone A, Tamborrino A, Esposto S, Berardi A, Servili M. Investigation on the Effects of a Pulsed Electric Field (PEF) Continuous System Implemented in an Industrial Olive Oil Plant. Foods 2022; 11:2758. [PMID: 36140886 PMCID: PMC9497696 DOI: 10.3390/foods11182758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate how the treatment of olive paste of the Picholine variety with pulsed electric fields (PEF) under real operating conditions in a large-scale olive oil extraction plant affects the extractability, chemical composition and sensory profile of the oils. The application of pulsed electric fields (PEF) as a non-thermal food processing technology is interesting for many food extraction processes. The results of this study show that pulsed electric fields can be used as a pretreatment before oil separation to increase the extractability of the process and improve the content of functional components. The application of pulsed electric field (PEF) treatment (2.4 kV/cm, 4 kJ/kg, 6 µs pulse width) to olive paste through a continuous system significantly increased the extractability and total concentration of phenols (especially oleuropein derivatives) compared to the control. In addition, the volatile compounds, α-tocopherol, the fatty acid profile and the main legal quality parameters of extra virgin olive oil (EVOO), including free acidity, peroxide values, extinction indices and sensory analysis, were evaluated. The pulsed electric fields (PEF) treatment did not modify these EVOO quality parameters, neither the α-tocopherol content nor the volatile profile. The sensory properties of EVOO were not affected as well as the PEF treatment showed a similar intensity of fruity and pungent attributes without any off-flavor according to the European Union legal standards. An increase in the bitter taste attribute was observed in the PEF oils. Consequently, this study demonstrates that pulsed electric fields (PEF) processing could be implemented in olive oil processing as pretreatment for improving the efficiency of the process.
Collapse
Affiliation(s)
- Alessandro Leone
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Antonia Tamborrino
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Sonia Esposto
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy
| | - Antonio Berardi
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Maurizio Servili
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy
| |
Collapse
|
5
|
The Impact of Collaborative Communication on the Physical Distribution Service Quality of Soft Drinks: A Case Study of Beverage Manufacturing Companies in Greece. BEVERAGES 2022. [DOI: 10.3390/beverages8030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research aimed to use the collaborative communication aspects of information sharing, incentive alignment, and decision synchronization to explain physical distribution service quality in the soft drink demand chain. The research was prompted by a desire to learn more about a topic that has received little attention in Greece while also contributing information about the variables that influence the performance of soft drink distribution networks. Manufacturers in Greece provided the data. The aspects of collaborative communication were significant determinants of the physical distribution service quality. Physical distribution service quality was shown to be significantly predicted by incentive alignment and information sharing, but not by decision synchronization. This research shows that collaborative communication aspects such as information sharing, decision synchronization, and incentive alignment enhance physical distribution service quality in soft drink demand chains. The research used a primary sample of 200 study participants from different drink manufacturing plants around Greece. In our research, we focused on vertical cooperation between manufacturers and distributors and its effect on physical distribution service quality. This is a relatively unexplored topic in the developing world. According to the scholars cited in the literature review, information exchange, incentive alignment, and decision synchronization improve physical distribution service quality in demand chains.
Collapse
|
6
|
Effect of Ohmic Heating on the Extraction Yield, Polyphenol Content and Antioxidant Activity of Olive Mill Leaves. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study examined the influence of ohmic heating (OH), compared to the conventional heating (Conven) and Control (solvent) methods, on the extraction of olive mill leaves. The main extraction parameters were: (i) solvent ratio (aqueous ethanol; 40%, 60%, and 80%, v/v), and (ii) extraction temperature; 45 °C, 55 °C, and 75 °C (for OH and Conven), and room temperature (for Control). The selected response variables were extraction yield (%), total phenolic content (TPC), and antioxidant activity (ABTS and DPPH). The ohmic system, compared to Conven and Control, exhibited the greatest effects (p < 0.001) on increasing (i) extraction yield (34.53%) at 75 °C with 80% ethanol, (ii) TPC at 55 °C (42.53, 34.35, 31.63 mg GAE/g extract, with 60%, 40%, and 80% ethanol, respectively), and (iii) antioxidant potency at 75 °C detected by DPPH and ABTS, in the range of 1.21–1.04 mM TE/g, and 0.62–0.48 mM TE/g extract, respectively. Further, there were relatively similar trends in TPC and antioxidant activity (both methods), regardless of solvent ratios, p < 0.001. These findings demonstrate the potential of ohmic heating, as a green processing tool, for efficient extraction (15 min) of olive leaves. To date, no literature has described ohmic application for olive leave extraction.
Collapse
|
7
|
Symes A, Shavandi A, Bekhit AEA. Effects of ionic liquids and pulsed electric fields on the extraction of antioxidants from green asparagus roots. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abbey Symes
- Department of Food Science University of Otago PO Box 56 Dunedin New Zealand
| | - Amin Shavandi
- Université libre de Bruxelles (ULB) École Polytechnique de Bruxelles 3BIO‐BioMatter Avenue F.D. Roosevelt, 50 ‐ CP 165/61 Brussels 1050 Belgium
| | | |
Collapse
|
8
|
Innovative Extraction Technologies for Development of Functional Ingredients Based on Polyphenols from Olive Leaves. Foods 2021; 11:foods11010103. [PMID: 35010227 PMCID: PMC8750173 DOI: 10.3390/foods11010103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Olive tree (Olea europea L.) leaves represent around 10% of the total weight of olives arriving at any given mill, which are generally discarded, causing economic and environmental issues. However, these are rich sources of natural bioactive compounds (i.e., polyphenols), which have health-promoting potential. Thus, the valorization of olive leaves by recovering and reusing their components should be a must for food sustainability and circular economy. This review provides an insight into the principal polyphenols present in olive leaves, together with agronomic variables influencing their content. It also summarizes the recent advances in the application of novel extraction technologies that have shown promising extraction efficacy, reducing the volume of extraction solvent and saving time and cost. Moreover, potential industrial uses and international patents filed in the pharmaceutic, food, and cosmetic sectors are discussed.
Collapse
|
9
|
Pappas VM, Lakka A, Palaiogiannis D, Athanasiadis V, Bozinou E, Ntourtoglou G, Makris DP, Dourtoglou VG, Lalas SI. Optimization of Pulsed Electric Field as Standalone "Green" Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants (Basel) 2021; 10:1554. [PMID: 34679689 PMCID: PMC8533100 DOI: 10.3390/antiox10101554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Olive leaves (OLL) are reported as a source of valuable antioxidants and as an agricultural by-product/waste. Thus, a twofold objective with multi-level cost and environmental benefits arises for a "green" standalone extraction technology. This study evaluates the OLL waste valorization through maximizing OLL extracts polyphenol concentration utilizing an emerging "green" non-thermal technology, Pulsed Electric Field (PEF). It also provides further insight into the PEF assistance span for static solid-liquid extraction of OLL by choosing and fine-tuning important PEF parameters such as the extraction chamber geometry, electric field strength, pulse duration, pulse period (and frequency), and extraction duration. The produced extracts were evaluated via comparison amongst them and against extracts obtained without the application of PEF. The Folin-Ciocalteu method, high-performance liquid chromatography, and differential scanning calorimetry were used to determine the extraction efficiency. The optimal PEF contribution on the total polyphenols extractability (38% increase with a 117% increase for specific metabolites) was presented for rectangular extraction chamber, 25% v/v ethanol:water solvent, pulse duration (tpulse) 2 μs, electric field strength (E) 0.85 kV cm-1, 100 μs period (Τ), and 15 min extraction duration (textraction), ascertaining a significant dependence of PEF assisting extraction performance to the parameters chosen.
Collapse
Affiliation(s)
- Vasileios M. Pappas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| | - Achillia Lakka
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| | - Dimitrios Palaiogiannis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| | - Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| | - Eleni Bozinou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| | - George Ntourtoglou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
- Department of Wine, Vine & Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos Str., Egaleo, GR-12243 Athens, Greece;
| | - Dimitris P. Makris
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| | - Vassilis G. Dourtoglou
- Department of Wine, Vine & Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos Str., Egaleo, GR-12243 Athens, Greece;
| | - Stavros I. Lalas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.M.P.); (A.L.); (D.P.); (V.A.); (E.B.); (G.N.); (D.P.M.)
| |
Collapse
|
10
|
Athanasiadis V, Lakka A, Palaiogiannis D, Pappas VM, Bozinou E, Ntourtoglou G, Makris DP, Dourtoglou VG, Lalas SI. Pulsed Electric Field and Salvia officinalis L. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods 2021; 10:2014. [PMID: 34574126 PMCID: PMC8469738 DOI: 10.3390/foods10092014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to evaluate the pulsed electric field (PEF)-assisted extraction of phytochemicals from Salvia officinalis L. leaves. The study parameters included a PEF pulse duration of 10 or 100 μs for 30 min, using different "green" extraction solvents: pure ethanol, pure water, and their mixtures at 25, 50, and 75% v/v concentrations. The resulting extracts were evaluated against reference extracts obtained without PEF. For estimation of the extraction efficiency, the content in total polyphenols, individual polyphenols, and volatile compounds, as well as the resistance to oxidation, were determined. The optimal PEF contribution on the total and individual polyphenols, rosmarinic acid, extractability (up to 73.2% and 403.1% increase, respectively) was obtained by 25% v/v aqueous ethanol solvent using a pulse duration of 100 μs. PEF was proven to also affect the final concentration and composition of volatile compounds of the extracts obtained.
Collapse
Affiliation(s)
- Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Achillia Lakka
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Dimitrios Palaiogiannis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Vasileios M. Pappas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Eleni Bozinou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - George Ntourtoglou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
- Department of Wine, Vine, & Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos Str., GR-12243 Egaleo, Athens, Greece;
| | - Dimitris P. Makris
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| | - Vassilis G. Dourtoglou
- Department of Wine, Vine, & Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos Str., GR-12243 Egaleo, Athens, Greece;
| | - Stavros I. Lalas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., GR-43100 Karditsa, Greece; (V.A.); (A.L.); (D.P.); (V.M.P.); (E.B.); (G.N.); (D.P.M.)
| |
Collapse
|