1
|
Alsaleh AN, Aziz IM, Aljowaie RM, Alshalan RM, Alkubaisi NA, Aboul-Soud MAM. In Vitro Evaluation, Chemical Profiling, and In Silico ADMET Prediction of the Pharmacological Activities of Artemisia absinthium Root Extract. Pharmaceuticals (Basel) 2024; 17:1646. [PMID: 39770489 PMCID: PMC11728498 DOI: 10.3390/ph17121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Artemisia absinthium L., is a plant with established pharmacological properties, but the A. absinthium root extract (AARE) remains unexplored. The aim of this study was to examine the chemical composition of AARE and assess its biological activity, which included antidiabetic, antibacterial, anticancer, and antioxidant properties. GC-MS was used to analyze the chemical components. The antioxidant activity of the total phenolic and flavonoid content was evaluated. Antibacterial activity and cytotoxic effects were identified. Enzyme inhibition experiments were performed to determine its antidiabetic potential. Molecular docking was utilized to evaluate the potential antioxidant, antibacterial, and anticancer activities of the compounds from AARE using Maestro 11.5 from the Schrödinger suite. AARE exhibited moderate antioxidant activity in DPPH (IC50: 172.41 ± 3.15 μg/mL) and ABTS (IC50: 378.94 ± 2.18 μg/mL) assays. Cytotoxicity tests on MCF-7 and HepG2 cancer cells demonstrated significant anticancer effects, with IC50 values of 150.12 ± 0.74 μg/mL and 137.11 ± 1.33 μg/mL, respectively. Apoptotic studies indicated an upregulation of pro-apoptotic genes (caspase-3, 8, 9, Bax) and a downregulation of anti-apoptotic markers (Bcl-2 and Bcl-Xl). AARE also inhibited α-amylase and α-glucosidase, suggesting potential antidiabetic effects, with IC50 values of 224.12 ± 1.17 μg/mL and 243.35 ± 1.51 μg/mL. Antibacterial assays revealed strong activity against Gram-positive bacteria. Molecular docking and pharmacokinetic analysis identified promising inhibitory effects of key AARE compounds on NADPH oxidase, E. coli Gyrase B, and Topoisomerase IIα, with favorable drug-like properties. These findings suggest AARE's potential in treating cancer, diabetes, and bacterial infections, warranting further in vivo and clinical studies.
Collapse
Affiliation(s)
- Asma N. Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
2
|
Al‐Maqtari QA, Othman N, Mohammed JK, Mahdi AA, Al‐Ansi W, Noman AE, Al‐Gheethi AAS, Asharuddin SM. Comparative analysis of the nutritional, physicochemical, and bioactive characteristics of Artemisia abyssinica and Artemisia arborescens for the evaluation of their potential as ingredients in functional foods. Food Sci Nutr 2024; 12:8255-8279. [PMID: 39479604 PMCID: PMC11521740 DOI: 10.1002/fsn3.4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Artemisia abyssinica and Artemisia arborescens are unique plants that show significant bioactive properties and are used for the treatment of a variety of diseases. This study assessed the nutritional values, functional properties, chemical composition, and bioactive attributes of these plants as functional nutritional supplements. Compared to A. arborescens, A. abyssinica had higher fat (4.76%), fiber (16.07%), total carbohydrates (55.87%), and energy (302.15 kcal/100 g DW), along with superior functional properties, including higher water and oil absorption capacities (638.81% and 425.85%, respectively) and foaming capacity and stability (25.67% and 58.48%). The investigation of volatile compounds found that A. abyssinica had higher amounts of hotrienol (4.53%), yomogi alcohol (3.92%), caryophyllene (3.67%), and carvotanacetone (3.64%), which possess anti-inflammatory, antimicrobial, and antioxidant properties. Artemisia abyssinica contributed over 30% of the recommended dietary intake (RDI) of amino acids. It displayed superior levels of sodium (31.46 mg/100 g DW) and calcium (238.07 mg/100 g DW). It also exhibited higher levels of organic acids, particularly malic acid, butyric acid, and succinic acid, compared to A. arborescens. Fatty acid analysis revealed palmitic and linoleic acids as primary components in both plants, with A. abyssinica having a higher palmitic acid content. Artemisia abyssinica also had higher vitamin C and thiamine levels. Although A. arborescens showed the highest total phenolic content (TPC), antioxidant activity, and capacity, A. abyssinica demonstrated acceptable efficiency in TPC and antioxidant content. These findings highlight the potential of both Artemisia species, particularly A. abyssinica, as valuable sources of nutrients and bioactive compounds for various applications.
Collapse
Affiliation(s)
- Qais Ali Al‐Maqtari
- Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built EnvironmentUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatJohorMalaysia
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
- Department of Microbiology, Faculty of ScienceSana'a UniversitySana'aYemen
| | - Norzila Othman
- Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built EnvironmentUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatJohorMalaysia
| | - Jalaleldeen Khaleel Mohammed
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Waleed Al‐Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Abeer Essam Noman
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and EnvironmentSana'a UniversitySana'aYemen
| | - Adel Ali Saeed Al‐Gheethi
- Global Centre for Environmental Remediation (GCER)University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)NewcastleNew South WalesAustralia
| | - Syazwani Mohd Asharuddin
- Micro‐Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built EnvironmentUniversiti Tun Hussein Onn Malaysia (UTHM)Batu PahatJohorMalaysia
| |
Collapse
|
3
|
Ahmad T, Kadam P, Bhiyani G, Ali H, Akbar M, Siddique MUM, Shahid M. Artemisia pallens W. Attenuates Inflammation and Oxidative Stress in Freund's Complete Adjuvant-Induced Rheumatoid Arthritis in Wistar Rats. Diseases 2024; 12:230. [PMID: 39452473 PMCID: PMC11508142 DOI: 10.3390/diseases12100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic effect of a methanolic extract of Artemisia pallens (methanolic extract of A. pallens, MEAP), an aromatic herb. Artemisinin content (% per dry weight of the plant) was estimated using a UV Vis spectrophotometer. In the present study, animals were divided into six groups (n = 6). The control group (group I) was injected with 0.25% of carboxymethyl cellulose. The arthritic control group (group II) was treated with Freund's complete adjuvant (by injecting 0.1 mL). Prednisolone (10 mg/kg), a lower dose of MEAP (100 mg/kg), a medium dose of MEAP (200 mg/kg), and a higher dose of MEAP (400 mg/kg) were orally delivered to groups III, IV, V, and VI, respectively. Freund's complete adjuvant was administered into the sub-plantar portion of the left-hind paw in all the groups except vehicle control to induce rheumatoid arthritis. Weight variation; joint diameter; paw volume; thermal and mechanical hyperalgesia; hematological, biochemical, and oxidative stress parameters; radiology; and a histopathological assessment of the synovial joint were observed in order to evaluate the antiarthritic effect of the methanolic extract of A. pallens. In this study, the estimated content of artemisinin was found to be 0.28% (per dry weight of the plant), which was in good agreement with the reported value. MEAP (200 and 400 mg/kg) caused a significant reduction in increased paw volume and joint diameter in arthritic rats while significantly increasing body weight and the mechanical threshold of thermal algesia. Moreover, complete blood counts and serum enzyme levels improved significantly. Radiological analysis showed a reduction in soft tissue swelling and small erosions. A histopathological examination of the cells revealed reduced cell infiltration and the erosion of joint cartilage in MEAP-administered arthritic rats. The present research suggests that the antiarthritic activity of the methanolic extract of A. pallens wall is promising, as evidenced by the findings explored in our rat model.
Collapse
Affiliation(s)
- Tasneem Ahmad
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Parag Kadam
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandawane, Pune 411038, Maharashtra, India;
| | - Gopal Bhiyani
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Md. Akbar
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy Dhule (MH), Dhule 424001, Maharashtra, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Bernatoniene J, Nemickaite E, Majiene D, Marksa M, Kopustinskiene DM. In Vitro and In Silico Anti-Glioblastoma Activity of Hydroalcoholic Extracts of Artemisia annua L. and Artemisia vulgaris L. Molecules 2024; 29:2460. [PMID: 38893336 PMCID: PMC11173592 DOI: 10.3390/molecules29112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma, the most aggressive and challenging brain tumor, is a key focus in neuro-oncology due to its rapid growth and poor prognosis. The C6 glioma cell line is often used as a glioblastoma model due to its close simulation of human glioma characteristics, including rapid expansion and invasiveness. Alongside, herbal medicine, particularly Artemisia spp., is gaining attention for its anticancer potential, offering mechanisms like apoptosis induction, cell cycle arrest, and the inhibition of angiogenesis. In this study, we optimized extraction conditions of polyphenols from Artemisia annua L. and Artemisia vulgaris L. herbs and investigated their anticancer effects in silico and in vitro. Molecular docking of the main phenolic compounds of A. annua and A. vulgaris and potential target proteins, including programmed cell death (apoptosis) pathway proteins proapoptotic Bax (PDB ID 6EB6), anti-apoptotic Bcl-2 (PDB ID G5M), and the necroptosis pathway protein (PDB ID 7MON), mixed lineage kinase domain-like protein (MLKL), in complex with receptor-interacting serine/threonine-protein kinase 3 (RIPK3), revealed the high probability of their interactions, highlighting the possible influence of chlorogenic acid in modulating necroptosis processes. The cell viability of rat C6 glioma cell line was assessed using a nuclear fluorescent double-staining assay with Hoechst 33342 and propidium iodide. The extracts from A. annua and A. vulgaris have demonstrated anticancer activity in the glioblastoma model, with the synergistic effects of their combined compounds surpassing the efficacy of any single compound. Our results suggest the potential of these extracts as a basis for developing more effective glioblastoma treatments, emphasizing the importance of further research into their mechanisms of action and therapeutic applications.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Emilija Nemickaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
| | - Daiva Majiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu Street 4, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
5
|
Lee YS, Umam K, Kuo TF, Yang YL, Feng CS, Yang WC. Functional and mechanistic studies of a phytogenic formulation, Shrimp Best, in growth performance and vibriosis in whiteleg shrimp. Sci Rep 2024; 14:11584. [PMID: 38773245 PMCID: PMC11109214 DOI: 10.1038/s41598-024-62436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 μg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.
Collapse
Affiliation(s)
- Yi-San Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- National Chung Hsing University, Taichung, Taiwan
- Faculty of Life Science and Technology, Biotechnology, Sumbawa University of Technology, Sumbawa, Indonesia
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- National Chung Hsing University, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Rîmbu CM, Serbezeanu D, Vlad-Bubulac T, Suflet DM, Motrescu I, Lungoci C, Robu T, Vrînceanu N, Grecu M, Cozma AP, Fotea L, Anița DC, Popovici I, Horhogea CE. Antimicrobial Activity of Artemisia dracunculus Oil-Loaded Agarose/Poly(Vinyl Alcohol) Hydrogel for Bio-Applications. Gels 2023; 10:26. [PMID: 38247749 PMCID: PMC10815380 DOI: 10.3390/gels10010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, the potential use of Artemisia dracunculus essential oil in bio-applications was investigated. Firstly, the phytochemicals from Artemisia dracunculus were analyzed by different methods. Secondly, the Artemisia dracunculus essential oil was incorporated into the hydrogel matrix based on poly(vinyl alcohol) (PVA) and agar (A). The structural, morphological, and physical properties of the hydrogel matrix loaded with different amounts of Artemisia dracunculus essential oil were thoroughly investigated. FTIR analysis revealed the successful loading of the essential oil Artemisia dracunculus into the PVA/A hydrogel matrix. The influence of the mechanical properties and antimicrobial activity of the PVA/A hydrogel matrix loaded with different amounts of Artemisia dracunculus was also assessed. The antimicrobial activity of Artemisia dracunculus (EO Artemisia dracunculus) essential oil was tested using the disk diffusion method and the time-kill assay method after entrapment in the PVA/A hydrogel matrices. The results showed that PVA/agar-based hydrogels loaded with EO Artemisia dracunculus exhibited significant antimicrobial activity (log reduction ratio in the range of 85.5111-100%) against nine pathogenic isolates, both Gram-positive (S. aureus, MRSA, E. faecalis, L. monocytogenes) and Gram-negative (E. coli, K. pneumoniae, S. enteritidis, S. typhimurium, and A. salmonicida). The resulted biocompatible polymers proved to have enhanced properties when functionalized with the essential oil of Artemisia dracunculus, offering opportunities and possibilities for novel applications.
Collapse
Affiliation(s)
- Cristina Mihaela Rîmbu
- Department of Public Health, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| | - Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (T.V.-B.); (D.M.S.)
| | - Tăchiță Vlad-Bubulac
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (T.V.-B.); (D.M.S.)
| | - Dana Mihaela Suflet
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (T.V.-B.); (D.M.S.)
| | - Iuliana Motrescu
- Department of Exact Sciences, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (I.M.); (A.P.C.)
| | - Constantin Lungoci
- Department of Plant Science, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (C.L.); (T.R.)
| | - Teodor Robu
- Department of Plant Science, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (C.L.); (T.R.)
| | - Narcisa Vrînceanu
- Department of Industrial Machines and Equipments, Faculty of Engineering, “Lucian Blaga” University of Sibiu, 10 Victoriei Blvd, 550024 Sibiu, Romania;
| | - Mariana Grecu
- Department of Pharmacology, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| | - Andreea Paula Cozma
- Department of Exact Sciences, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania; (I.M.); (A.P.C.)
| | - Lenuța Fotea
- Department of Animal Resources and Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Dragoș Constantin Anița
- Regional Center of Advanced Research for Emerging Diseases Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Ivona Popovici
- Department of Preclinics, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| | - Cristina Elena Horhogea
- Department of Public Health, Iasi “Ion Ionescu de la Brad” University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
7
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|