1
|
Kang Y, Guan Y, Li S. Innovative hydrogel solutions for articular cartilage regeneration: a comprehensive review. Int J Surg 2024; 110:7984-8001. [PMID: 39236090 PMCID: PMC11634198 DOI: 10.1097/js9.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Articular cartilage damage is predominantly caused by trauma, osteoarthritis (OA), and other pathological conditions. The limited intrinsic capacity of cartilage tissue to self-repair necessitates timely intervention following acute injuries to prevent accelerated degeneration, leading to the development of planar arthritis or even osteoarthritis. Unfortunately, current therapies for articular cartilage damage are inadequate in effectively replacing or regenerating compromised cartilage due to the absence of suitable tissue-engineered artificial matrices. However, there is promise in utilizing hydrogels, a category of biomaterials characterized by their elasticity, smooth surfaces, and high water content, for cartilage regeneration. Recent advancements in hydrogel engineering have focused on improving their bioactive and physicochemical properties, encompassing innovative composition designs, dynamic modulation, and intricate architectures. This review provides a comprehensive analysis of hydrogels for articular cartilage repair, focusing on their innovative design, clinical applications, and future research directions. By integrating insights from the latest research studies and clinical trials, the review offers a unique perspective on the translation of hydrogels for articular cartilage repair, underscoring their potential as promising therapeutic agents.
Collapse
Affiliation(s)
- Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute
| | - Yujing Guan
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Ganjingzi, Dalian, Liaoning Province, People’s Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Ganjingzi, Dalian, Liaoning Province, People’s Republic of China
| |
Collapse
|
2
|
Galocha-León C, Antich C, Clares-Naveros B, Voltes-Martínez A, Marchal JA, Gálvez-Martín P. Design and Characterization of Biomimetic Hybrid Construct Based on Hyaluronic Acid and Alginate Bioink for Regeneration of Articular Cartilage. Pharmaceutics 2024; 16:1422. [PMID: 39598545 PMCID: PMC11597687 DOI: 10.3390/pharmaceutics16111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Three-dimensional bioprinting technology has enabled great advances in the treatment of articular cartilage (AC) defects by the biofabrication of biomimetic constructs that restore and/or regenerate damaged tissue. In this sense, the selection of suitable cells and biomaterials to bioprint constructs that mimic the architecture, composition, and functionality of the natural extracellular matrix (ECM) of the native tissue is crucial. In the present study, a novel cartilage-like biomimetic hybrid construct (CBC) was developed by 3D bioprinting to facilitate and promote AC regeneration. Methods: The CBC was biofabricated by the co-bioprinting of a bioink based on hyaluronic acid (HA) and alginate (AL) loaded with human mesenchymal stromal cells (hMSCs), with polylactic acid supporting the biomaterial, in order to mimic the microenvironment and structural properties of native AC, respectively. The CBC was biologically in vitro characterized. In addition, its physiochemical characteristics were evaluated in order to determine if the presence of hMSCs modified its properties. Results: Results from biological analysis demonstrated that CBC supported the high viability and proliferation of hMSCs, facilitating chondrogenesis after 5 weeks in vitro. The evaluation of physicochemical properties in the CBCs confirmed that the CBC developed could be suitable for use in cartilage tissue engineering. Conclusions: The results demonstrated that the use of bioprinted CBCs based on hMSC-AL/HA-bioink for AC repair could enhance the regeneration and/or formation of hyaline cartilaginous tissue.
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | | |
Collapse
|
3
|
Sankaranarayanan J, Lee SC, Kim HK, Kang JY, Kuppa SS, Seon JK. Cinnamaldehyde-Treated Bone Marrow Mesenchymal-Stem-Cell-Derived Exosomes via Aqueous Two-Phase System Attenuate IL-1β-Induced Inflammation and Catabolism via Modulation of Proinflammatory Signaling Pathways. Int J Mol Sci 2024; 25:7263. [PMID: 39000370 PMCID: PMC11242605 DOI: 10.3390/ijms25137263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disorder that is distinguished by inflammation and chronic cartilage damage. Interleukin-1β (IL-1β) is a proinflammatory cytokine that plays an important role in the catabolic processes that underlie the pathogenesis of OA. In this study, we investigate the therapeutic efficacy of exosomes derived from untreated bone-marrow-derived mesenchymal stem cells (BMMSC-Exo) and those treated with cinnamaldehyde (BMMSC-CA-Exo) for preventing the in vitro catabolic effects of IL-1β on chondrocytes. We stimulated chondrocytes with IL-1β to mimic the inflammatory microenvironment of OA. We then treated these chondrocytes with BMMSC-Exo and BMMSC-CA-Exo isolated via an aqueous two-phase system and evaluated their effects on the key cellular processes using molecular techniques. Our findings revealed that treatment with BMMSC-Exo reduces the catabolic effects of IL-1β on chondrocytes and alleviates inflammation. However, further studies directly comparing treatments with BMMSC-Exo and BMMSC-CA-Exo are needed to determine if CA preconditioning can provide additional anti-inflammatory benefits to the exosomes beyond those of CA preconditioning or treatment with regular BMMSC-Exo. Through a comprehensive molecular analysis, we elucidated the regulatory mechanisms underlying this protective effect. We found a significant downregulation of proinflammatory signaling pathways in exosome-infected chondrocytes, suggesting the potential modulation of the NF-κB and MAPK signaling cascades. Furthermore, our study identified the molecular cargo of BMMSC-Exo and BMMSC-CA-Exo, determining the key molecules, such as anti-inflammatory cytokines and cartilage-associated factors, that may contribute to their acquisition of chondroprotective properties. In summary, BMMSC-Exo and BMMSC-CA-Exo exhibit the potential as therapeutic agents for OA by antagonizing the in vitro catabolic effects of IL-1β on chondrocytes. The regulation of the proinflammatory signaling pathways and bioactive molecules delivered by the exosomes suggests a multifaceted mechanism of action. These findings highlight the need for further investigation into exosome-based therapies for OA and joint-related diseases.
Collapse
Affiliation(s)
- Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.S.); (S.S.K.)
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519763, Republic of Korea; (S.C.L.); (H.K.K.); (J.Y.K.)
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501757, Republic of Korea
| | - Seok Cheol Lee
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519763, Republic of Korea; (S.C.L.); (H.K.K.); (J.Y.K.)
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501757, Republic of Korea
| | - Hyung Keun Kim
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519763, Republic of Korea; (S.C.L.); (H.K.K.); (J.Y.K.)
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501757, Republic of Korea
| | - Ju Yeon Kang
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519763, Republic of Korea; (S.C.L.); (H.K.K.); (J.Y.K.)
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501757, Republic of Korea
| | - Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.S.); (S.S.K.)
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519763, Republic of Korea; (S.C.L.); (H.K.K.); (J.Y.K.)
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501757, Republic of Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.S.); (S.S.K.)
- Department of Orthopaedic Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519763, Republic of Korea; (S.C.L.); (H.K.K.); (J.Y.K.)
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501757, Republic of Korea
| |
Collapse
|
4
|
Huang J, Ren Q, Jiao L, Niu S, Liu C, Zhou J, Wu L, Yang Y. TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Exp Ther Med 2024; 28:283. [PMID: 38800044 PMCID: PMC11117099 DOI: 10.3892/etm.2024.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt-related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'-tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shuo Niu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chenghong Liu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Juan Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yadong Yang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
5
|
Jahn J, Halm-Pozniak A, Klutzny M, Noll M, Stärke C, Lohmann CH, Bertrand J. Collagen 1 gel may improve the regenerative capacity of minced adult and preosteoarthritic cartilage. Knee Surg Sports Traumatol Arthrosc 2024; 32:821-828. [PMID: 38415965 DOI: 10.1002/ksa.12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Minced cartilage implantation (MCI) is an evolving technique for the treatment of osteochondral lesions. It was hypothesised that mincing of cartilage may affect chondrocyte viability and phenotype and that embedding in collagen 1 gel results in an improved outcome. The objective of this study was to evaluate the impact of cartilage mincing and whether collagen 1 gel mediates beneficial effects on the chondrocyte phenotype and viability. METHODS Human cartilage samples from 11 patients undergoing total knee arthroplasty were collected and minced according to the MCI protocol. Minced cartilage was cultured for 1 week with and without embedding in collagen 1 gel and was compared with unminced cartilage flakes as control. Quantitative reverse transcription-PCR and immunohistochemical staining for the chondrocyte marker genes SOX9, COL2, ACAN, COL10 and MMP13 were used to examine the chondrocyte phenotype. Cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. RESULTS Increased chondrocyte cell death of cultured cartilage after mincing was observed. Chondrocytes from minced cartilage exhibited significantly decreased expression and protein levels of homeostatic and hypertrophic chondrocyte markers. Embedding in collagen 1 gel showed no positive effect on viability. However, remarkable is the increased expression of ACAN and the preserved protein level of SOX9 in the collagen 1-embedded minced cartilage. CONCLUSIONS This study shows that the mincing of cartilage leads to increased chondrocyte death and decreased expression of chondrocyte phenotypic marker genes after 7 days. The use of collagen 1 gel may improve the stability of the phenotype, which needs to be further elucidated. LEVEL OF EVIDENCE Level III (therapeutic).
Collapse
Affiliation(s)
- Jannik Jahn
- Department of Orthopedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Marcus Klutzny
- Department of Orthopedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Michaela Noll
- Department of Orthopedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Meidrix biomedicals GmbH, Esslingen, Germany
| | - Christian Stärke
- Department of Orthopedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|