1
|
Karimi A, Razaghi R, Stanik A, Daniel D'costa S, Mirafzal I, Kelley MJ, Acott TS, Gong H. High-resolution modeling of aqueous humor dynamics in the conventional outflow pathway of a normal human donor eye. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108538. [PMID: 39644783 PMCID: PMC11805654 DOI: 10.1016/j.cmpb.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND OBJECTIVE The conventional aqueous outflow pathway, which includes the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and inner wall endothelium of Schlemm's canal (SC) and its basement membrane, plays a significant role in regulating intraocular pressure (IOP) by controlling aqueous humor outflow resistance. Despite its significance, the biomechanical and hydrodynamic properties of this region remain inadequately understood. Fluid-structure interaction (FSI) and computational fluid dynamics (CFD) modeling using high-resolution microstructural images of the outflow pathway provides a comprehensive method to estimate these properties under varying conditions, offering valuable understandings beyond the capabilities of current imaging techniques. METHODS In this study, we utilized high-resolution 3D serial block-face scanning electron microscopy (SBF-SEM) to image the TM/JCT/SC complex of a normal human donor eye perfusion-fixed at an IOP of 7 mm Hg. We developed a detailed 3D finite element (FE) model of the pathway using SBF-SEM images to simulate the biomechanical environment. The model included the TM/JCT/SC complex (structure) with interspersed aqueous humor (fluid). We employed a 3D, inverse FE algorithm to calculate the unloaded geometry of the TM/JCT/SC complex and utilized FSI to simulate the pressurization of the complex from 0 to 15 mm Hg. RESULTS Our simulations revealed that the resultant velocity distribution in the aqueous humor across the TM/JCT/SC complex is heterogeneous. The JCT and its deepest regions, specifically the basement membrane of the inner wall of SC, exhibited a volumetric average velocity of ∼0.011 mm/s, which is higher than the TM regions, with a volumetric average velocity of ∼0.007 mm/s. Shear stress analysis indicated that the maximum shear stress, based on our FE code criteria, was 0.5 Pa starting from 10 µm into the TM from the anterior chamber and increased to 0.95 Pa in the JCT and its adjacent SC inner wall basement membrane. Also, the tensile stress and strain distributions showed significant variations, with the first principal stress reaching up to 57 Pa (compressive volumetric average) and the first principal strain reaching up to 3.5 % in areas of high mechanical loading. The resultant stresses, strains, and velocities exhibited relatively similar average values across the TM, JCT, and SC regions, primarily due to the uniform elastic moduli assigned to these components. Our computational fluid dynamics (CFD) analysis revealed that while the velocity of the aqueous humor remained consistent, the maximum shear stress was reduced by a factor of thirty. CONCLUSION The uneven distribution of shear stress and velocity within the TM/JCT/SC complex highlights the complex biomechanical environment that regulates aqueous humor outflow.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ansel Stanik
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Iman Mirafzal
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Karimi A, Darche M, Stanik A, Razaghi R, Mirafzal I, Hassani K, Hassani M, White E, Gantar I, Pagès S, Batti L, Acott TS, Paques M. Impact of aging on anterior segment morphology and aqueous humor dynamics in human Eyes: Advanced imaging and computational techniques. Biocybern Biomed Eng 2025; 45:62-73. [PMID: 39958630 PMCID: PMC11823714 DOI: 10.1016/j.bbe.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Objective Aging results in significant structural and functional changes in the anterior segment of the eye, influencing intraocular pressure (IOP) and overall ocular health. Although aging is a well-established risk factor for primary open-angle glaucoma, a leading cause of irreversible blindness, the specific mechanisms through which aging drives morphological changes in anterior segment tissues and affects aqueous humor dynamics remain incompletely understood. Methods In this study, we employed cutting-edge light sheet fluorescence microscopy (LSFM) to capture high-resolution, volumetric images of cleared human donor eyes' anterior segment tissues. This advanced imaging enabled a comprehensive morphological analysis of key parameters, including central and peripheral corneal thickness (CCT and PCT), iris thickness, anterior chamber area (ACA), and ciliary body area (CBA). By integrating these morphological parameters with computational fluid dynamics (CFD) models, we analyzed aqueous humor dynamics across n = 6 female human donor eyes, spanning a wide age range of 5 to 94 years (all of Caucasian descent). Results The CCT and PCT demonstrated thinning with age, accompanied by a reduction in ACA. In contrast, the CBA remained relatively stable across all age groups. Computational fluid dynamics analysis showed a decline in aqueous humor velocity and wall shear stress, with younger eyes exhibiting higher velocities and shear stress, compared to older eyes. Conclusion These findings emphasize the value of integrating LSFM and CFD approaches to provide a detailed understanding of how aging impacts the anterior segment and its fluid dynamics. This study contributes to the understanding of age-related ocular changes, highlighting the importance of considering these changes in the diagnosis and management of age-related eye diseases.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon
Health & Science University, Portland, OR, United States
- Department of Biomedical Engineering, Oregon Health &
Science University, Portland, OR, United States
| | - Marie Darche
- Paris Eye Imaging Group, 15-20 Hôpital National de
la Vision, INSERM-DHOS Clinical Investigation Center, 1423 Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la
Vision, Paris, France
| | - Ansel Stanik
- Department of Ophthalmology, Casey Eye Institute, Oregon
Health & Science University, Portland, OR, United States
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon
Health & Science University, Portland, OR, United States
| | - Iman Mirafzal
- Department of Mechanical Engineering, University of Nevada,
Reno, Nevada, United States
| | - Kamran Hassani
- School of Mechanical, Industrial & Aeronautical
Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Mojtaba Hassani
- Department of Ophthalmology, Casey Eye Institute, Oregon
Health & Science University, Portland, OR, United States
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon
Health & Science University, Portland, OR, United States
| | - Ivana Gantar
- Wyss Center for Bio- and Neuroengineering, Geneva,
Switzerland
| | - Stéphane Pagès
- Wyss Center for Bio- and Neuroengineering, Geneva,
Switzerland
| | - Laura Batti
- Wyss Center for Bio- and Neuroengineering, Geneva,
Switzerland
| | - Ted S. Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon
Health & Science University, Portland, OR, United States
- Department Chemical Physiology & Biochemistry, School
of Medicine, Oregon Health & Science University, Portland, OR, United
States
| | - Michel Paques
- Paris Eye Imaging Group, 15-20 Hôpital National de
la Vision, INSERM-DHOS Clinical Investigation Center, 1423 Paris, France
- Sorbonne Université, INSERM, CNRS, Institut de la
Vision, Paris, France
| |
Collapse
|
3
|
Karimi A, Aga M, Khan T, D'costa SD, Thaware O, White E, Kelley MJ, Gong H, Acott TS. Comparative analysis of traction forces in normal and glaucomatous trabecular meshwork cells within a 3D, active fluid-structure interaction culture environment. Acta Biomater 2024; 180:206-229. [PMID: 38641184 PMCID: PMC11095374 DOI: 10.1016/j.actbio.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Taaha Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Omkar Thaware
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Karimi A, Khan S, Razaghi R, Aga M, Rahmati SM, White E, Kelley MJ, Jian Y, Acott TS. Segmental biomechanics of the normal and glaucomatous human aqueous outflow pathway. Acta Biomater 2024; 173:148-166. [PMID: 37944773 PMCID: PMC10841915 DOI: 10.1016/j.actbio.2023.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The conventional aqueous outflow pathway, encompassing the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and inner wall endothelium of Schlemm's canal (SC), governs intraocular pressure (IOP) regulation. This study targets the biomechanics of low-flow (LF) and high-flow (HF) regions within the aqueous humor outflow pathway in normal and glaucomatous human donor eyes, using a combined experimental and computational approach. LF and HF TM/JCT/SC complex tissues from normal and glaucomatous eyes underwent uniaxial tensile testing. Dynamic motion of the TM/JCT/SC complex was recorded using customized green-light optical coherence tomography during SC pressurization in cannulated anterior segment wedges. A hyperviscoelastic model quantified TM/JCT/SC complex properties. A fluid-structure interaction model simulated tissue-aqueous humor interaction. FluoSpheres were introduced into the pathway via negative pressure in the SC, with their motion tracked using two-photon excitation microscopy. Tensile test results revealed that the elastic moduli of the LF and HF regions in glaucomatous eyes are 3.5- and 1.5-fold stiffer than the normal eyes, respectively. The FE results also showed significantly larger shear moduli in the TM, JCT, and SC of the glaucomatous eyes compared to the normal subjects. The LF regions in normal eyes demonstrated larger elastic moduli compared to the HF regions in glaucomatous eyes. The resultant strain in the outflow tissues and velocity of the aqueous humor in the FSI models were in good agreement with the digital volume correlation and 3D particle image velocimetry data, respectively. This study uncovers stiffer biomechanical responses in glaucomatous eyes, with LF regions stiffer than HF regions in both normal and glaucomatous eyes. STATEMENT OF SIGNIFICANCE: This study delves into the biomechanics of the conventional aqueous outflow pathway, a crucial regulator of intraocular pressure and ocular health. By analyzing mechanical differences in low-flow and high-flow regions of normal and glaucomatous eyes, this research unveils the stiffer response in glaucomatous eyes. The distinction between regions' properties offers insights into aqueous humor outflow regulation, while the integration of experimental and computational methods enhances credibility. These findings have potential implications for disease management and present a vital step toward innovative ophthalmic interventions. This study advances our understanding of glaucoma's biomechanical basis and its broader impact on ocular health.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Shanjida Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|