1
|
Qiu J, Chen Y, Zhang L, Wu J, Zeng X, Shi X, Liu L, Chen J. A comprehensive review on enzymatic biodegradation of polyethylene terephthalate. ENVIRONMENTAL RESEARCH 2024; 240:117427. [PMID: 37865324 DOI: 10.1016/j.envres.2023.117427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Polyethylene terephthalate (PET) is a polymer synthesized via the dehydration and condensation reaction between ethylene glycol and terephthalic acid. PET has emerged as one of the most extensively employed plastic materials due to its exceptional plasticity and durability. Nevertheless, PET has a complex structure and is extremely difficult to degrade in nature, causing severe pollution to the global ecological environment and posing a threat to human health. Currently, the methods for PET processing mainly include physical, chemical, and biological methods. Biological enzyme degradation is considered the most promising PET degradation method. In recent years, an increasing number of enzymes that can degrade PET have been identified, and they primarily target the ester bond of PET. This review comprehensively introduced the latest research progress in PET enzymatic degradation from the aspects of PET-degrading enzymes, PET biodegradation pathways, the catalytic mechanism of PET-degrading enzymes, and biotechnological strategies for enhancing PET-degrading enzymes. On this basis, the current challenges within the enzymatic PET degradation process were summarized, and the directions that need to be worked on in the future were pointed out. This review provides a reference and basis for the subsequent effective research on PET biodegradation.
Collapse
Affiliation(s)
- Jiarong Qiu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; Development Center of Science and Education Park of Fuzhou University, Jinjiang, 362251, China
| | - Yuxin Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Liangqing Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; Development Center of Science and Education Park of Fuzhou University, Jinjiang, 362251, China.
| | - Jinzhi Wu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Xinguo Shi
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Lemian Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Jianfeng Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| |
Collapse
|
2
|
Iquebal MA, Jagannadham J, Jaiswal S, Prabha R, Rai A, Kumar D. Potential Use of Microbial Community Genomes in Various Dimensions of Agriculture Productivity and Its Management: A Review. Front Microbiol 2022; 13:708335. [PMID: 35655999 PMCID: PMC9152772 DOI: 10.3389/fmicb.2022.708335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Agricultural productivity is highly influenced by its associated microbial community. With advancements in omics technology, metagenomics is known to play a vital role in microbial world studies by unlocking the uncultured microbial populations present in the environment. Metagenomics is a diagnostic tool to target unique signature loci of plant and animal pathogens as well as beneficial microorganisms from samples. Here, we reviewed various aspects of metagenomics from experimental methods to techniques used for sequencing, as well as diversified computational resources, including databases and software tools. Exhaustive focus and study are conducted on the application of metagenomics in agriculture, deciphering various areas, including pathogen and plant disease identification, disease resistance breeding, plant pest control, weed management, abiotic stress management, post-harvest management, discoveries in agriculture, source of novel molecules/compounds, biosurfactants and natural product, identification of biosynthetic molecules, use in genetically modified crops, and antibiotic-resistant genes. Metagenomics-wide association studies study in agriculture on crop productivity rates, intercropping analysis, and agronomic field is analyzed. This article is the first of its comprehensive study and prospects from an agriculture perspective, focusing on a wider range of applications of metagenomics and its association studies.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratna Prabha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
3
|
Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts 2022. [DOI: 10.3390/catal12040385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural resources are considered a promising source of microorganisms responsible for producing biocatalysts with great relevance in several industrial areas. However, a significant fraction of the environmental microorganisms remains unknown or unexploited due to the limitations associated with their cultivation in the laboratory through classical techniques. Metagenomics has emerged as an innovative and strategic approach to explore these unculturable microorganisms through the analysis of DNA extracted from environmental samples. In this review, a detailed discussion is presented on the application of metagenomics to unravel the biotechnological potential of natural resources for the discovery of promising biocatalysts. An extensive bibliographic survey was carried out between 2010 and 2021, covering diverse metagenomic studies using soil and/or water samples from different types and locations. The review comprises, for the first time, an overview of the worldwide metagenomic studies performed in soil and water and provides a complete and global vision of the enzyme diversity associated with each specific environment.
Collapse
|
4
|
Oliveira VM, Andreote FD, Cortelo PC, Castro-Gamboa I, Costa-Lotufo LV, Polizeli MDLTM, Thiemann OH, Setubal JC. Microorganisms: the secret agents of the biosphere, and their key roles in biotechnology. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract We present a survey of projects that have been funded by FAPESP under the BIOTA-Microorganisms program. These projects generated a wide variety of results, including the identification of novel antibacterial-producing microorganisms, the characterization of novel microbial enzymes for industrial applications, taxonomic classification of novel microorganisms in several environments, investigation of the soil and mangrove microbial ecosystems and its influence on endangered plant species, and the sequencing of novel metagenome-assembled genomes. The results surveyed demonstrate the importance of microorganisms in environments that play important roles in human activities as well as the potential that many of these microorganisms have in contributing to biotechnological applications crucial for human survival in the 21st century.
Collapse
|
5
|
Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 2019; 51:217-228. [PMID: 31741310 DOI: 10.1007/s42770-019-00162-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.
Collapse
Affiliation(s)
- Kelly Jaqueline Alves
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mylenne Calciolari Pinheiro da Silva
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| | - Simone Raposo Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Centenario Avenue, 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Júlia Ronzella Ottoni
- University Center Dinâmica das Cataratas, Castelo Branco Street, 349, Foz do Iguaçu, Paraná, 85852-010, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Valeria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato Avenue, 999, Paulínia, São Paulo, 13140-000, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
6
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
7
|
Qu W, Liu T, Wang D, Hong G, Zhao J. Metagenomics-Based Discovery of Malachite Green-Degradation Gene Families and Enzymes From Mangrove Sediment. Front Microbiol 2018; 9:2187. [PMID: 30258430 PMCID: PMC6143792 DOI: 10.3389/fmicb.2018.02187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Malachite green (MG) is an organic contaminant and the effluents with MG negatively influence the health and balance of the coastal and marine ecosystem. The diverse and abundant microbial communities inhabiting in mangroves participate actively in various ecological processes. Metagenomic sequencing from mangrove sediments was applied to excavate the resources MG-degradation genes (MDGs) and to assess the potential of their corresponding enzymes. A data set of 10 GB was assembled into 33,756 contigs and 44,743 ORFs were predicted. In the data set, 666 bacterial genera and 13 pollutant degradation pathways were found. Proteobacteria and Actinobacteria were the most dominate phyla in taxonomic assignment. A total of 44 putative MDGs were revealed and possibly derived from 30 bacterial genera, most of which belonged to the phyla of Proteobacteria and Bacteroidetes. The MDGs belonged to three gene families, including peroxidase genes (up to 93.54% of total MDGs), laccase (3.40%), and p450 (3.06%). Of the three gene families, three representatives (Mgv-rLACC, Mgv-rPOD, and Mgv-rCYP) which had lower similarities to the closest sequences in GenBank were prokaryotic expressed and their enzymes were characterized. Three recombinant proteins showed different MG-degrading activities. Mgv-rPOD had the strongest activity which decolorized 97.3% of MG (300 mg/L) within 40 min. In addition, Mgv-rPOD showed a more complete process of MG degradation compared with other two recombinant proteins according to the intermediates detected by LC-MS. Furthermore, the high MG-degrading activity was maintained at low temperature (20°C), wider pH range, and the existence of metal ions and chelating agent. Mgv-rLACC and Mgv-rCYP also removed 63.7% and 54.1% of MG (20 mg/L) within 24 h, respectively. The results could provide a broad insight into discovering abundant genetic resources and an effective strategy to access the eco-friendly way for preventing coastal pollution.
Collapse
Affiliation(s)
- Wu Qu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Tan Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dexiang Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Guolin Hong
- The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Braz J Microbiol 2018; 49:757-769. [PMID: 29866608 PMCID: PMC6175736 DOI: 10.1016/j.bjm.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.
Collapse
|