1
|
Wang J, Li R. Effects, methods and limits of the cryopreservation on mesenchymal stem cells. Stem Cell Res Ther 2024; 15:337. [PMID: 39343920 PMCID: PMC11441116 DOI: 10.1186/s13287-024-03954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of cell capable of regulating the immune system, as well as exhibiting self-renewal and multi-lineage differentiation potential. Mesenchymal stem cells have emerged as an essential source of seed cells for therapeutic cell therapy. It is crucial to cryopreserve MSCs in liquid nitrogen prior to clinical application while preserving their functionality. Furthermore, efficient cryopreservation greatly enhances MSCs' potential in a range of biological domains. Nevertheless, there are several limits on the MSC cryopreservation methods now in use, necessitating thorough biosafety assessments before utilizing cryopreserved MSCs. Therefore, in order to improve the effectiveness of cryopreserved MSCs in clinical stem cell treatment procedures, new technological techniques must be developed immediately. The study offers an exhaustive analysis of the state-of-the-art MSC cryopreservation techniques, their effects on MSCs, and the difficulties encountered when using cryopreserved MSCs in clinical applications.
Collapse
Affiliation(s)
- Jialing Wang
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China
| | - Rui Li
- Chengdu Senkicel Biotechnology Co. Ltd, Chengdu, China.
| |
Collapse
|
2
|
Skepastianos G, Mallis P, Kostopoulos E, Michalopoulos E, Skepastianos V, Palazi C, Pannuto L, Tsourouflis G. Efficient Decellularization of the Full-Thickness Rat-Derived Abdominal Wall to Produce Acellular Biologic Scaffolds for Tissue Reconstruction: Promising Evidence Acquired from In Vitro Results. Bioengineering (Basel) 2023; 10:913. [PMID: 37627798 PMCID: PMC10451677 DOI: 10.3390/bioengineering10080913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Functional restoration of abdominal wall defects represents one of the fundamental challenges of reconstructive surgery. Synthetic grafts or crosslinked animal-derived biological grafts are characterized by significant adverse reactions, which are mostly observed after their implantation. The aim of this study was to evaluate the efficacy of the decellularization protocol to produce a completely acellular full-thickness abdominal wall scaffold. METHODS Full-thickness abdominal wall samples were harvested from Wistar rats and submitted to a three-cycle decellularization process. Histological, biochemical, and DNA quantification analyses were applied to evaluate the effect of the decellularization protocol. Mechanical testing and immunogenicity assessment were also performed. RESULTS Histological, biochemical, and DNA analysis results showed efficient decellularization of the abdominal wall samples after the third cycle. Decellularized abdominal wall scaffolds were characterized by good biochemical and mechanical properties. CONCLUSION The data presented herein confirm the effective production of a rat-derived full-thickness abdominal wall scaffold. Expanding this approach will allow the exploitation of the capacity of the proposed decellularization protocol in producing acellular abdominal wall scaffolds from larger animal models or human cadaveric donors. In this way, the utility of biological scaffolds with preserved in vivo remodeling properties may be one step closer to its application in clinical studies.
Collapse
Affiliation(s)
- George Skepastianos
- Plastic Surgery Department, EANP Metaxa, National Hospital of Athens, 51 Botatsi Street, 185 37 Pireus, Greece; (G.S.); (E.K.); (V.S.); (C.P.)
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Epameinondas Kostopoulos
- Plastic Surgery Department, EANP Metaxa, National Hospital of Athens, 51 Botatsi Street, 185 37 Pireus, Greece; (G.S.); (E.K.); (V.S.); (C.P.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Vasileios Skepastianos
- Plastic Surgery Department, EANP Metaxa, National Hospital of Athens, 51 Botatsi Street, 185 37 Pireus, Greece; (G.S.); (E.K.); (V.S.); (C.P.)
| | - Chrysoula Palazi
- Plastic Surgery Department, EANP Metaxa, National Hospital of Athens, 51 Botatsi Street, 185 37 Pireus, Greece; (G.S.); (E.K.); (V.S.); (C.P.)
| | - Lucia Pannuto
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead RH19 3DZ, UK;
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Medical School, University of Athens, 115 27 Athens, Greece;
| |
Collapse
|
3
|
Malekpour K, Hazrati A, Soudi S, Hashemi SM. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Control Release 2023; 354:755-769. [PMID: 36706838 DOI: 10.1016/j.jconrel.2023.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) perform their therapeutic effects through various mechanisms, including their ability to differentiate, producing different growth factors, immunomodulatory factors, and extracellular vesicles (EVs). In addition to the mentioned mechanisms, a new aspect of the therapeutic potential of MSCs has recently been noticed, which occurs through mitochondrial transfer. Various methods of MSCs mitochondria transfer have been used in studies to benefit from their therapeutic potential. Among these methods, mitochondrial transfer after MSCs transplantation in cell-to-cell contact, EVs-mediated transfer of mitochondria, and the use of MSCs isolated mitochondria (MSCs-mt) are well studied. Pathological conditions can affect the cells in the damaged microenvironment and lead to cells mitochondrial damage. Since the defect in the mitochondrial function of the cell leads to a decrease in ATP production and the subsequent cell death, restoring the mitochondrial content, functions, and hemostasis can affect the functions of the damaged cell. Various studies show that the transfer of MSCs mitochondria to other cells can affect vital processes such as proliferation, differentiation, cell metabolism, inflammatory responses, cell senescence, cell stress, and cell migration. These changes in cell attributes and behavior are very important for therapeutic purposes. For this reason, their investigation can play a significant role in the direction of the researchers'.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran..
| |
Collapse
|
4
|
Histological Characterization of Class I HLA Molecules in Whole Umbilical Cord Tissue Towards an Inexhaustible Graft Alternative for Reconstructive Surgery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010110. [PMID: 36671682 PMCID: PMC9855378 DOI: 10.3390/bioengineering10010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Limited graft availability is a constant clinical concern. Hence, the umbilical cord (UC) is an attractive alternative to autologous grafts. The UC is an inexhaustible tissue source, and its removal is harmless and part of standard of care after the birth of the baby. Minimal information exists regarding the immunological profile of a whole UC when it is considered to be used as a tissue graft. We aimed to characterize the localization and levels of class I human leukocyte antigens (HLAs) to understand the allogenicity of the UC. Additionally, HLA-E and HLA-G are putative immunosuppressive antigens that are abundant in placenta, but their profiles in UC whole tissue are unclear. HYPOTHESIS The UC as a whole expresses a relatively low but ubiquitous level of HLA-ABC and significant levels of HLA-G and HLA-E. METHODS Healthy patients with no known pregnancy-related complications were approached for informed consent. UCs at term and between 12 and 19 weeks were collected to compare HLA profiles by gestational age. Formalin-fixed paraffin-embedded tissues were sectioned to 5 µm and immunohistochemically stained with a pan-HLA-ABC, two HLA-G-specific, or an HLA-E-specific antibody. RESULTS HLA-ABC was consistently found present in UCs. HLA-ABC was most concentrated in the UC vessel walls and amniotic epithelium but more dispersed in the Wharton's Jelly. HLA-E had a similar localization pattern to HLA-ABC in whole UC tissues at both gestational ages, but its protein level was lower. HLA-G localization and intensity were poor in all UC tissues analyzed, but additional analyses by Western immunoblot and mass spectrometry revealed a low level of HLA-G in the UC. CONCLUSION The UC may address limitations of graft availability. Rather than the presence of HLA-G, the immunosuppressive properties of the UC are more likely due to the abundance of HLA-E and the interaction known to occur between HLA-E and HLA-ABC. The co-localization of HLA-E and HLA-ABC suggests that HLA-E is likely presenting HLA-ABC leader peptides to immune cells, which is known to have a primarily inhibitory effect.
Collapse
|
5
|
Vanawati N, Barlian A, Judawisastra H, Wibowo I. The combinatory effect of scaffold topography and culture condition: an approach to nucleus pulposus tissue engineering. Future Sci OA 2022; 8:FSO810. [PMID: 36248063 PMCID: PMC9540240 DOI: 10.2144/fsoa-2021-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Scaffold topography and culture medium conditions for human wharton's jelly mesenchymal stem cells (hWJ-MSC) are critical components of the approach to nucleus pulposus (NP) tissue engineering. Aim To evaluate the silk fibroin (SF) scaffold topography analysis (optimal thickness and pore diameter) and to determine culture medium conditions for the growth and differentiation of hWJ-MSC. Method hWJ-MSCs were seeded into different thicknesses and pore size diameters and grown in different concentrations of glucose, platelet rich plasma (PRP) and oxygen. The cell-seeded scaffold was evaluated for cell attachment, growth and differentiation potency. Results & discussion The results indicated that SF scaffold with a minimum thickness 3.5 mm and pore diameter of 500 μm with cells cultured under low glucose, 10% PRP and normoxia conditions induced the growth and differentiation of hWJ-MSCs, indicated by the accumulation of glycosaminoglycans content and the presence of type II collagen, as markers of NP-like cells.
Collapse
Affiliation(s)
- Noviana Vanawati
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia,Author for correspondence:
| | - Hermawan Judawisastra
- Faculty of Mechanical & Aerospace Engineering, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Indra Wibowo
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| |
Collapse
|
6
|
Mallis P, Chatzistamatiou T, Dimou Z, Sarri EF, Georgiou E, Salagianni M, Triantafyllia V, Andreakos E, Stavropoulos-Giokas C, Michalopoulos E. Mesenchymal stromal cell delivery as a potential therapeutic strategy against COVID-19: Promising evidence from in vitro results. World J Biol Chem 2022; 13:47-65. [PMID: 35432769 PMCID: PMC8966500 DOI: 10.4331/wjbc.v13.i2.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic, which was initiated in December 2019. COVID-19 is characterized by a low mortality rate (< 6%); however, this percentage is higher in elderly people and patients with underlying disorders. COVID-19 is characterized by mild to severe outcomes. Currently, several therapeutic strategies are evaluated, such as the use of anti-viral drugs, prophylactic treatment, monoclonal antibodies, and vaccination. Advanced cellular therapies are also investigated, thus representing an additional therapeutic tool for clinicians. Mesenchymal stromal cells (MSCs), which are known for their immunoregulatory properties, may halt the induced cytokine release syndrome mediated by SARS-CoV-2, and can be considered as a potential stem cell therapy. AIM To evaluate the immunoregulatory properties of MSCs, upon stimulation with COVID-19 patient serum. METHODS MSCs derived from the human Wharton's Jelly (WJ) tissue and bone marrow (BM) were isolated, cryopreserved, expanded, and defined according to the criteria outlined by the International Society for Cellular Therapies. Then, WJ and BM-MSCs were stimulated with a culture medium containing 15% COVID-19 patient serum, 1% penicillin-streptomycin, and 1% L-glutamine for 48 h. The quantification of interleukin (IL)-1 receptor a (Ra), IL-6, IL-10, IL-13, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-a, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and indoleamine-2,3-dioxygenase (IDO) was performed using commercial ELISA kits. The expression of HLA-G1, G5, and G7 was evaluated in unstimulated and stimulated WJ and BM-MSCs. Finally, the interactions between MSCs and patients' macrophages were established using co-culture experiments. RESULTS Thawed WJ and BM-MSCs exhibited a spindle-shaped morphology, successfully differentiated to "osteocytes", "adipocytes", and "chondrocytes", and in flow cytometric analysis were characterized by positivity for CD73, CD90, and CD105 (> 95%) and negativity for CD34, CD45, and HLA-DR (< 2%). Moreover, stimulated WJ and BM-MSCs were characterized by increased cytoplasmic granulation, in comparison to unstimulated cells. The HLA-G isoforms (G1, G5, and G7) were successfully expressed by the unstimulated and stimulated WJ-MSCs. On the other hand, only weak expression of HLA-G1 was identified in BM-MSCs. Stimulated MSCs secreted high levels of IL-1Ra, IL-6, IL-10, IL-13, TGF-β1, FGF, VEGF, PDGF, and IDO in comparison to unstimulated cells (P < 0.05) after 12 and 24 h. Finally, macrophages derived from COVID-19 patients successfully adapted the M2 phenotype after co-culturing with stimulated WJ and BM-MSCs. CONCLUSION WJ and BM-MSCs successfully produced high levels of immunoregulatory agents, which may efficiently modulate the over-activated immune responses of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Eirini-Faidra Sarri
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Eleni Georgiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
7
|
An Affordable Approach of Mesenchymal Stem Cell Therapy in Treating Perianal Fistula Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:73-95. [DOI: 10.1007/5584_2022_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Mallis P, Michalopoulos E, Chatzistamatiou T, Giokas CS. Interplay between mesenchymal stromal cells and immune system: clinical applications in immune-related diseases. EXPLORATION OF IMMUNOLOGY 2021. [DOI: 10.37349/ei.2021.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2024]
Abstract
Mesenchymal stromal cells (MSCs) are a mesodermal stem cell population, with known self-renewal and multilineage differentiation properties. In the last century, MSCs have been widely used in regenerative medicine and tissue engineering approaches. MSCs initially were isolated from bone marrow aspirates, but currently have been identified in a great number of tissues of the human body. Besides their utilization in regenerative medicine, MSCs possess significant immunoregulatory/immunosuppressive properties, through interaction with the cells of innate and adaptive immunity. MSCs can exert their immunomodulatory properties with either cell-cell contact or via paracrine secretion of molecules, such as cytokines, growth factors and chemokines. Of particular importance, the MSCs’ immunomodulatory properties are explored as promising therapeutic strategies in immune-related disorders, such as autoimmune diseases, graft versus host disease, cancer. MSCs may also have an additional impact on coronavirus disease-19 (COVID-19), by attenuating the severe symptoms of this disorder. Nowadays, a great number of clinical trials, of MSC-mediated therapies are evaluated for their therapeutic potential. In this review, the current knowledge on cellular and molecular mechanisms involved in MSC-mediated immunomodulation were highlighted. Also, the most important aspects, regarding their potential application in immune-related diseases, will be highlighted. The broad application of MSCs has emerged their role as key immunomodulatory players, therefore their utilization in many disease situations is full of possibilities for future clinical treatment.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Theofanis Chatzistamatiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece 2Histocompatibility & Immunogenetics Lab, Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | | |
Collapse
|
9
|
Mallis P, Michalopoulos E, Chatzistamatiou T, Stavropoulos-Giokas C. Mesenchymal stromal cells as potential immunomodulatory players in severe acute respiratory distress syndrome induced by SARS-CoV-2 infection. World J Stem Cells 2020; 12:731-751. [PMID: 32952855 PMCID: PMC7477656 DOI: 10.4252/wjsc.v12.i8.731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 and the related coronavirus disease-19 (COVID-19) is a worldwide emerging situation, which was initially reported in December 2019 in Wuhan, China. Currently, more than 7258842 new cases, and more than 411879 deaths have been reported globally. This new highly transmitted coronavirus is responsible for the development of severe acute respiratory distress syndrome. Due to this disorder, a great number of patients are hospitalized in the intensive care unit followed by connection to extracorporeal membrane oxygenation for breath supporting and survival. Severe acute respiratory distress syndrome is mostly accompanied by the secretion of proinflammatory cytokines, including interleukin (IL)-2, IL-6, IL-7, granulocyte colony-stimulating factor (GSCF), interferon-inducible protein 10 (IP10), monocyte chemotactic protein-1 (MCP1), macrophage inflammatory protein 1A (MIP1A), and tumor necrosis factor alpha (TNF-α), an event which is known as "cytokine storm". Further disease pathology involves a generalized modulation of immune responses, leading to fatal multiorgan failure. Currently, no specific treatment or vaccination against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been developed. Mesenchymal stromal cells (MSCs), which are known for their immunosuppressive actions, could be applied as an alternative co-therapy in critically-ill COVID-19 patients. Specifically, MSCs can regulate the immune responses through the conversion of Th1 to Th2, activation of M2 macrophages, and modulation of dendritic cells maturation. These key immunoregulatory properties of MSCs may be exerted either by produced soluble factors or by cell-cell contact interactions. To date, several clinical trials have been registered to assess the safety, efficacy, and therapeutic potential of MSCs in COVID-19. Moreover, MSC treatment may be effective for the reversion of ground-glass opacity of damaged lungs and reduce the tissue fibrosis. Taking into account the multifunctional properties of MSCs, the proposed stem-cell-based therapy may be proven significantly effective in critically-ill COVID-19 patients. The current therapeutic strategy may improve the patient's overall condition and in parallel may decrease the mortality rate of the current disease.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | | |
Collapse
|
10
|
Protogerou V, Beshari SE, Michalopoulos E, Mallis P, Chrysikos D, Samolis AA, Stavropoulos-Giokas C, Troupis T. The Combined Use of Stem Cells and Platelet Lysate Plasma for the Treatment of Erectile Dysfunction: A Pilot Study-6 Months Results. MEDICINES (BASEL, SWITZERLAND) 2020; 7:14. [PMID: 32197323 PMCID: PMC7151592 DOI: 10.3390/medicines7030014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Background: The current treatment of Erectile Dysfunction (ED) is mainly based on the use of drugs that provide erections shortly after use but they do not really treat the problem. Stem cell therapy is a novel treatment with regenerative properties that can possibly treat erectile dysfunction. Methods: Five patients with erectile disease were treated with Adipose-Derived Stem Cells (ADSCs) and Platelet Lysate Plasma (PLP). ADSCs were obtained through abdominal liposuction and PLP was prepared after obtaining blood samples from peripheral veins. Erectile function was evaluated with the International Index of Erectile Function questionnaire (IIEF-5) questionnaire, penile triplex at the 1st, 3rd, 6th and 12th month post-treatment. A CT scan of the head, thorax and abdomen was done before treatment and at the 12th month. Results: IIEF-5 scores were improved in all patients at the 6th month although not in the same pattern in all patients. Peak Systolic Velocity (PSV) also improved at the 6th month in all patients but also with different patterns in each patient, while End Diastolic Velocity (EDV) was more variable. Two patients decreased the treatment they used in order to obtain erection (from Intracavernosal injections (ICI) they used PDE-5Is), two had unassisted erections and one had an initial improvement which decreased at the 6th month. There were no side effects noted. Conclusions: Stem cell therapy in combination with PLP appears to show some improvement in erectile function and has minimal side effects in the short term.
Collapse
Affiliation(s)
- Vassilis Protogerou
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
- 2nd Urological Department, Attikon Hospital, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece
| | - Sara El Beshari
- Health Plus Genomics Laboratory, Part of Health Plus Network of Specialty Centers, 11th St, Hazaa bin Zayed St, Al Karama Area - Abu Dhabi, UAE;
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; (E.M.); (P.M.); (C.S.-G.)
| | - Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; (E.M.); (P.M.); (C.S.-G.)
| | - Dimosthenis Chrysikos
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
| | - Alexandros A. Samolis
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece; (E.M.); (P.M.); (C.S.-G.)
| | - Theodoros Troupis
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, M. Asias 21 st, 12462 Athens, Greece; (D.C.); (A.A.S.); (T.T.)
| |
Collapse
|
11
|
Jimenez-Puerta GJ, Marchal JA, López-Ruiz E, Gálvez-Martín P. Role of Mesenchymal Stromal Cells as Therapeutic Agents: Potential Mechanisms of Action and Implications in Their Clinical Use. J Clin Med 2020; 9:jcm9020445. [PMID: 32041213 PMCID: PMC7074225 DOI: 10.3390/jcm9020445] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Due to the great therapeutic interest that involves the translation of mesenchymal stromal cells (MSCs) into clinical practice, they have been widely studied as innovative drugs, in order to treat multiple pathologies. MSC-based cell therapy involves the administration of MSCs either locally or systemically into the receptor body where they can traffic and migrate towards the affected tissue and participate in the process of healing. The therapeutic effects of MSCs compromise of different mechanisms such as the functional integration of differentiated MSCs into diseased host tissue after transplantation, their paracrine support, and their impact on the regulation of both the innate and the acquired immune system. Here, we establish and provide recent advances about the principal mechanisms of action through which MSCs can perform their activity and effect as a therapeutic tool. The purpose of this review is to examine and discuss the MSCs capacity of migration, their paracrine effect, as well as MSC-mediated modifications on immune cell responses.
Collapse
Affiliation(s)
- Gonzalo José Jimenez-Puerta
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18016 Granada, Spain; (G.J.J.-P.); (J.A.M.)
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18016 Granada, Spain; (G.J.J.-P.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Elena López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, 18016 Granada, Spain; (G.J.J.-P.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Correspondence: (E.L.-R.); or (P.G.-M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18016 Granada, Spain
- R&D Human Health, Bioibérica S.A.U., 08029 Barcelona, Spain
- Correspondence: (E.L.-R.); or (P.G.-M.)
| |
Collapse
|
12
|
Kot M, Baj-Krzyworzeka M, Szatanek R, Musiał-Wysocka A, Suda-Szczurek M, Majka M. The Importance of HLA Assessment in "Off-the-Shelf" Allogeneic Mesenchymal Stem Cells Based-Therapies. Int J Mol Sci 2019; 20:E5680. [PMID: 31766164 PMCID: PMC6888380 DOI: 10.3390/ijms20225680] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
The need for more effective therapies of chronic and acute diseases has led to the attempts of developing more adequate and less invasive treatment methods. Regenerative medicine relies mainly on the therapeutic potential of stem cells. Mesenchymal stem cells (MSCs), due to their immunosuppressive properties and tissue repair abilities, seem to be an ideal tool for cell-based therapies. Taking into account all available sources of MSCs, perinatal tissues become an attractive source of allogeneic MSCs. The allogeneic MSCs provide "off-the-shelf" cellular therapy, however, their allogenicity may be viewed as a limitation for their use. Moreover, some evidence suggests that MSCs are not as immune-privileged as it was previously reported. Therefore, understanding their interactions with the recipient's immune system is crucial for their successful clinical application. In this review, we discuss both autologous and allogeneic application of MSCs, focusing on current approaches to allogeneic MSCs therapies, with a particular interest in the role of human leukocyte antigens (HLA) and HLA-matching in allogeneic MSCs transplantation. Importantly, the evidence from the currently completed and ongoing clinical trials demonstrates that allogeneic MSCs transplantation is safe and seems to cause no major side-effects to the patient. These findings strongly support the case for MSCs efficacy in treatment of a variety of diseases and their use as an "off-the-shelf" medical product.
Collapse
Affiliation(s)
- Marta Kot
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.B.-K.); (R.S.)
| | - Rafał Szatanek
- Department of Clinical Immunology, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.B.-K.); (R.S.)
| | - Aleksandra Musiał-Wysocka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Magdalena Suda-Szczurek
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| |
Collapse
|
13
|
Mallis P, Stavropoulos-Giokas C, Michalopoulos E. Introduction to the Special Issue on Stem Cell and Biologic Scaffold Engineering. Bioengineering (Basel) 2019; 6:72. [PMID: 31438485 PMCID: PMC6784072 DOI: 10.3390/bioengineering6030072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering and regenerative medicine is a rapidly evolving research field that effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. In addition, tissue engineering requires the interaction of biologic scaffolds with cellular populations. Stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of "artificial" tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds, thus bringing artificial tissues one step closer to personalized medicine. In this special issue of Bioengineering, we highlight the beneficial effects of stem cells and scaffolds in the emerging field of tissue engineering. The current issue includes articles regarding the use of stem cells in tissue engineering approaches and the proper production of biologically based scaffolds like nerve conduit, esophageal scaffold, and fibrin gel.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, Athens 115 27, Greece.
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, Athens 115 27, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, Athens 115 27, Greece
| |
Collapse
|
14
|
Protogerou V, Michalopoulos E, Mallis P, Gontika I, Dimou Z, Liakouras C, Stavropoulos-Giokas C, Kostakopoulos N, Chrisofos M, Deliveliotis C. Administration of Adipose Derived Mesenchymal Stem Cells and Platelet Lysate in Erectile Dysfunction: A Single Center Pilot Study. Bioengineering (Basel) 2019; 6:21. [PMID: 30841525 PMCID: PMC6466012 DOI: 10.3390/bioengineering6010021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Erectile dysfunction (ED) affects more than 30 million men; endothelial dysfunction plays a significant role in EDs pathogenesis. The aim of this study was to administer mesenchymal stem cells (MSC) derived from adipose tissue and platelet lysate (PL) into patients with erectile dysfunction. This pilot study enrolled eight patients with diagnosed ED. Patients enrolled were suffering from organic ED due to diabetes melitus, hypertension, hypercholesterolaemia, and Peyronie disease. The patients were distributed in 2 groups. Patients in group A received adipose derived mesenchymal stem cells (ADMSC) resuspended in PL while patients in group B received only PL. ADMSCs were isolated from patients' adipose tissue and expanded. In addition, blood sampling was obtained from the patients in order to isolate platelet lysate. After the application of the above treatments, patients were evaluated with an International Index of Erectile Function (IIEF-5) questionnaire, penile triplex, and reported morning erections. After MSCs and PL administration, patients presented improved erectile function after 1 and 3 months of follow-up. A statistically significant difference was observed in the IIEF-5 score before and after administration of both treatments after the first month (p < 0.05) and the third month (p < 0.05). No statistically significant difference was observed in the IIEF-5 score between group A and B patients. All patients were characterized by improved penile triplex and increased morning erections. No severe adverse reactions were observed in any patient except a minor pain at the site of injection, which was in the limits of tolerability. The results of this study indicated the satisfactory use of MSCs and PL in ED. MSCs in combination with PL or PL alone seems to be very promising, especially without having the negative effects of the current therapeutic treatment.
Collapse
Affiliation(s)
- Vassilis Protogerou
- Department of Anatomy and Surgical Anatomy, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece.
- 2nd Urological Department, Attikon Hospital, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece.
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Ioanna Gontika
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Christos Liakouras
- 2nd Urological Department, Attikon Hospital, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece.
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Nikolaos Kostakopoulos
- 2nd Urological Department, Attikon Hospital, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece.
| | - Michael Chrisofos
- 2nd Urological Department, Attikon Hospital, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece.
| | - Charalampos Deliveliotis
- 2nd Urological Department, Medical School of Athens, National and Kapodistrian University, 12462 Athens, Greece.
| |
Collapse
|