1
|
Zhou MY, Su QW, Yu WH, Fang LF, Zhu BK. Organic solvent nanofiltration with nanoparticles aggregation based on electrostatic interaction for molecular separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Design and Control Applied to an Extractive Distillation Column with Salt for the Production of Bioethanol. Processes (Basel) 2022. [DOI: 10.3390/pr10091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extractive distillation with salts, unlike other dehydration technologies, is better due to the null toxicity that exists in the distillate, since salt cannot be evaporated. With this distillation technology, it is possible to obtain a high concentration of ethanol, however, there are still problems in the control of the distillation columns in the presence of disturbances. The present work deals with the simulation and control of an extractive distillation column using CaCl2 as a separating agent, for which the Aspen Dynamics® simulator is used. The measurement and control of the ethanol composition are carried out by means of temperature, in addition, four control structures are evaluated and compared. These structures are L, D, LV, and DV, which are the most common in conventional distillation, and their performance is measured by means of deterministic indicators applying changes (disturbances) of composition and the flow rate in the main feed of the column. The most relevant results of this work lead to the fact that by applying a controller, it is possible to maintain the desired purity above the international purity standards (99% ethanol) that govern biofuels.
Collapse
|
3
|
Enhanced Energy Recovery from Food Waste by Co-Production of Bioethanol and Biomethane Process. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primary objective of this research is to study ways to increase the potential of energy production from food waste by co-production of bioethanol and biomethane. In the first step, the food waste was hydrolysed with an enzyme at different concentrations. By increasing the concentration of enzyme, the amount of reducing sugar produced increased, reaching a maximum amount of 0.49 g/g food waste. After 120 h of fermentation with Saccharomyces cerevisiae, nearly all reducing sugars in the hydrolysate were converted to ethanol, yielding 0.43–0.50 g ethanol/g reducing sugar, or 84.3–99.6% of theoretical yield. The solid residue from fermentation was subsequently subjected to anaerobic digestion, allowing the production of biomethane, which reached a maximum yield of 264.53 ± 2.3 mL/g VS. This results in a gross energy output of 9.57 GJ, which is considered a nearly 58% increase in total energy obtained, compared to ethanol production alone. This study shows that food waste is a raw material with high energy production potential that could be further developed into a promising energy source. Not only does this benefit energy production, but it also lowers the cost of food waste disposal, reduces greenhouse gas emissions, and is a sustainable energy production approach.
Collapse
|
4
|
Sanap PP, Mahajan YS. Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ethyl alcohol (ethanol) is viewed upon as a fuel additive or even as an alternative fuel. Fermentation is used to produce dilute (<20 mass%) ethanol. This is needed to be concentrated to almost anhydrous, fuel grade ethanol (>99.5 mass%). The technologies used for concentration from dilute grade to fuel grade ethanol are summarized in this review. Thus, extraction; distillation; use of membranes; adsorption and some miscellaneous methods are discussed in detail. For each technique, the inlet and outlet concentrations; merits and demerits and scope for future work are indicated. Hybrid separations are discussed. In addition to technical feasibility, economic viability of the techniques is also discussed. A brief discussion on current industrial practice is also presented.
Collapse
Affiliation(s)
- Pooja P. Sanap
- Chemical Engineering Department , Dr. B. A. Technological University , Lonere, Tal. Mangoan , Dist. Raigad , Maharashtra 402 103 , India
| | - Yogesh S. Mahajan
- Chemical Engineering Department , Dr. B. A. Technological University , Lonere, Tal. Mangoan , Dist. Raigad , Maharashtra 402 103 , India
| |
Collapse
|
5
|
Abstract
Food Waste (FW) because of its composition is considered as an ideal feedstock for the production of biofuels and in particular bioethanol. The production of bioethanol from lignocellulosic materials has been studied over a long time. The process consists of the stages of pretreatment, enzymatic hydrolysis, fermentation and product recovery. However, the legal framework regarding biofuels has established specific environmental criteria for their production which are regularly updated. The most common tool for the assessment of the environmental performance of a process or product is the Life Cycle Analysis (LCA). In the present review, the results of LCA studies on the production of bioethanol from food waste are presented. Significant differences are observed among the studies in terms of the methodological choices made. Despite the high heterogeneity observed which does not allow a direct comparison among them, there is strong evidence that the production of bioethanol from food waste is an eco-friendly process which can substantially contribute to Green House Gas (GHG) emissions savings.
Collapse
|