1
|
Pagliaro A, Artegiani B, Hendriks D. Emerging approaches to enhance human brain organoid physiology. Trends Cell Biol 2025:S0962-8924(24)00254-X. [PMID: 39826996 DOI: 10.1016/j.tcb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Brain organoids are important 3D models for studying human brain development, disease, and evolution. To overcome some of the existing limitations that affect organoid quality, reproducibility, characteristics, and in vivo resemblance, current efforts are directed to improve their physiological relevance by exploring different, yet interconnected, routes. In this review, these approaches and their latest developments are discussed, including stem cell optimization, refining morphogen administration strategies, altering the extracellular matrix (ECM) niche, and manipulating tissue architecture to mimic in vivo brain morphogenesis. Additionally, strategies to increase cell diversity and enhance organoid maturation, such as establishing co-cultures, assembloids, and organoid in vivo xenotransplantation, are reviewed. We explore how these various factors can be tuned and intermingled and speculate on future avenues towards even more physiologically-advanced brain organoids.
Collapse
Affiliation(s)
- Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Kühn S, Magno V, Zimmermann R, Limasale YDP, Atallah P, Stoppa A, Männel MJ, Thiele J, Friedrichs J, Freudenberg U, Werner C. Microgels With Electrostatically Controlled Molecular Affinity to Direct Morphogenesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409731. [PMID: 39449199 PMCID: PMC11756038 DOI: 10.1002/adma.202409731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Concentration gradients of soluble signaling molecules-morphogens-determine the cellular organization in tissue development. Morphogen-releasing microgels have shown potential to recapitulate this principle in engineered tissue constructs, however, with limited control over the molecular cues in space and time. Inspired by the functionality of sulfated glycosaminoglycans (sGAGs) in morphogen signaling in vivo, a library of sGAG-based microgels is developed and designated as µGel Units to Instruct Development (µGUIDEs). Adjustment of the microgel's sGAG sulfation patterns and concentration enabled the programming of electrostatic affinities that control the release of morphogens. Based on computational analyses of molecular transport processes, µGUIDEs provided unprecedented precision in the spatiotemporal modulation of vascular endothelial growth factor (VEGF) gradients in a microgel-in-gel vasculogenesis model and kidney organoid cultures. The versatile approach offers new options for creating morphogen signaling centers to advance the understanding of tissue and organ development.
Collapse
Affiliation(s)
- Sebastian Kühn
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Valentina Magno
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Ralf Zimmermann
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Yanuar Dwi Putra Limasale
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Passant Atallah
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Aukha Stoppa
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Max J. Männel
- Institute of Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
- Institute of ChemistryOtto von Guericke University MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies DresdenCluster of Excellence Physics of Life and Faculty of Chemistry and Food ChemistryDresden University of TechnologyFetscherstraße 10501307DresdenGermany
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials DresdenLeibniz Institute of Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies DresdenCluster of Excellence Physics of Life and Faculty of Chemistry and Food ChemistryDresden University of TechnologyFetscherstraße 10501307DresdenGermany
| |
Collapse
|
3
|
Zhang Y, Qi F, Chen P, Liu BF, Li Y. Spatially defined microenvironment for engineering organoids. BIOPHYSICS REVIEWS 2024; 5:041302. [PMID: 39679203 PMCID: PMC11646138 DOI: 10.1063/5.0198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
In the intricately defined spatial microenvironment, a single fertilized egg remarkably develops into a conserved and well-organized multicellular organism. This observation leads us to hypothesize that stem cells or other seed cell types have the potential to construct fully structured and functional tissues or organs, provided the spatial cues are appropriately configured. Current organoid technology, however, largely depends on spontaneous growth and self-organization, lacking systematic guided intervention. As a result, the structures replicated in vitro often emerge in a disordered and sparse manner during growth phases. Although existing organoids have made significant contributions in many aspects, such as advancing our understanding of development and pathogenesis, aiding personalized drug selection, as well as expediting drug development, their potential in creating large-scale implantable tissue or organ constructs, and constructing multicomponent microphysiological systems, together with functioning at metabolic levels remains underutilized. Recent discoveries have demonstrated that the spatial definition of growth factors not only induces directional growth and migration of organoids but also leads to the formation of assembloids with multiple regional identities. This opens new avenues for the innovative engineering of higher-order organoids. Concurrently, the spatial organization of other microenvironmental cues, such as physical stresses, mechanical loads, and material composition, has been minimally explored. This review delves into the burgeoning field of organoid engineering with a focus on potential spatial microenvironmental control. It offers insight into the molecular principles, expected outcomes, and potential applications, envisioning a future perspective in this domain.
Collapse
Affiliation(s)
- Yilan Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Afting C, Walther T, Drozdowski OM, Schlagheck C, Schwarz US, Wittbrodt J, Göpfrich K. DNA microbeads for spatio-temporally controlled morphogen release within organoids. NATURE NANOTECHNOLOGY 2024; 19:1849-1857. [PMID: 39251862 PMCID: PMC11638066 DOI: 10.1038/s41565-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry.
Collapse
Affiliation(s)
- Cassian Afting
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
| | - Tobias Walther
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Oliver M Drozdowski
- BioQuant Center, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany.
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
5
|
Yang H, Niu S, Guo M, Xue Y. Molecular mechanisms of silver nanoparticle-induced neurotoxic injury and new perspectives for its neurotoxicity studies: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124934. [PMID: 39260546 DOI: 10.1016/j.envpol.2024.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Silver nanoparticles (AgNPs) garnered significant attention and applications in the field of nanotechnology due to their unique physicochemical properties. However, with the increasing exposure of AgNPs in the environment and biological systems, concerns about their potential neurotoxicity have also risen. Recent studies on the neurotoxic effects and mechanisms of AgNPs have often relied on traditional toxicological research methods and perspectives. This reliance has limited the extrapolation of these findings to the human brain environment and hindered a deep understanding of the neurotoxicity of AgNPs. This review first outlines the molecular mechanisms of AgNPs-induced neurotoxic injury from a traditional research perspective, identifying oxidative stress, inflammatory responses, and autophagy disorders as key areas of current research. Related molecular signaling pathways, including the nuclear transcription factor-κB (NF-κB) signaling pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the calcium signaling pathway, have been implicated in the neurotoxic injury process induced by AgNPs. Subsequently, we elucidated the unique advantages of the 3D brain organoids applied to the neurotoxicity study of AgNPs by drawing on relevant studies in the same field. We also emphasize that establishing a standardized 3D brain organoids construction platform is a crucial prerequisite for its widespread application. Furthermore, we suggest that future studies should explore the neurotoxicity mechanisms of AgNPs through the lenses of "adaptive homeostasis" and "structure-activity relationship analysis". In conclusion, the neurotoxicity of AgNPs should be comprehensively evaluated by integrating new research techniques and perspectives, ultimately allowing these nanoparticles to better serve human society.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Liu H, Gan Z, Qin X, Wang Y, Qin J. Advances in Microfluidic Technologies in Organoid Research. Adv Healthc Mater 2024; 13:e2302686. [PMID: 38134345 DOI: 10.1002/adhm.202302686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described. Then the recent progress in integrating organoids into microfluidic systems is highlighted, involving microarrays for high-throughput organoid manipulation, microreactors for organoid hydrogel scaffold fabrication, and microfluidic chips for functional organoid culture. The opportunities in the nascent combination of organoids and microfluidics that lie ahead to accelerate research in organ development, disease studies, drug screening, and regenerative medicine are also discussed. Finally, the challenges and future perspectives in the development of advanced microfluidic platforms and modified technologies for building organoids with higher fidelity and standardization are envisioned.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Mapping and exploring the organoid state space using synthetic biology. Semin Cell Dev Biol 2023; 141:23-32. [PMID: 35466054 DOI: 10.1016/j.semcdb.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
The functional relevance of an organoid is dependent on the differentiation, morphology, cell arrangement and biophysical properties, which collectively define the state of an organoid. For an organoid culture, an individual organoid or the cells that compose it, these state variables can be characterised, most easily by transcriptomics and by high-content image analysis. Their states can be compared to their in vivo counterparts. Current evidence suggests that organoids explore a wider state space than organs in vivo due to the lack of niche signalling and the variability of boundary conditions in vitro. Using data-driven state inference and in silico modelling, phase diagrams can be constructed to systematically sort organoids along biochemical or biophysical axes. These phase diagrams allow us to identify control strategies to modulate organoid state. To do so, the biochemical and biophysical environment, as well as the cells that seed organoids, can be manipulated.
Collapse
|
8
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
9
|
Hoppe M, Habib A, Desai R, Edwards L, Kodavali C, Sherry Psy NS, Zinn PO. Human brain organoid code of conduct. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1143298. [PMID: 39086687 PMCID: PMC11285598 DOI: 10.3389/fmmed.2023.1143298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 08/02/2024]
Abstract
Human brain organoids are models derived from human embryonic or induced pluripotent stem cells that mimic basic cerebral microanatomy and demonstrate simple functional neuronal networks. Brain organoids have been a rapidly expanding avenue for biomedical research in general and specifically: neural development, regeneration, and central nervous system pathophysiology. However, technology replicating functional aspects of the human brain, including electrically active neural networks, requires a responsible code of conduct. In this review, we focus the discussion on intrinsic and extrinsic ethical factors associated with organoids: intrinsic considerations arise with the growing complexity of human brain organoids, including human-animal chimerism, consciousness development, and questions of where these human-like beings fall in a moral hierarchy. Extrinsic considerations explore ethics on obtainment, manufacturing, and production of sophisticated human products. In summary, a thoughtful code of conduct using human brain organoids towards the advancement of science and medicine is crucial. This article shall facilitate a structured thought process approaching the moral landscape of organoid technology.
Collapse
Affiliation(s)
- Meagan Hoppe
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ahmed Habib
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Riya Desai
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lincoln Edwards
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chowdari Kodavali
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Natalie Sandel Sherry Psy
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Hematology University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pascal O. Zinn
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Koh I, Hagiwara M. Gradient to sectioning CUBE workflow for the generation and imaging of organoids with localized differentiation. Commun Biol 2023; 6:299. [PMID: 36944757 PMCID: PMC10030548 DOI: 10.1038/s42003-023-04694-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
Advancements in organoid culture have led to various in vitro mini-organs that mimic native tissues in many ways. Yet, the bottleneck remains to generate complex organoids with body axis patterning, as well as keeping the orientation of organoids during post-experiment analysis processes. Here, we present a workflow for culturing organoids with morphogen gradient using a CUBE culture device, followed by sectioning samples with the CUBE to retain information on gradient direction. We show that hiPSC spheroids cultured with two separated differentiation media on opposing ends of the CUBE resulted in localized expressions of the respective differentiation markers, in contrast to homogeneous distribution of markers in controls. We also describe the processes for cryo and paraffin sectioning of spheroids in CUBE to retain gradient orientation information. This workflow from gradient culture to sectioning with CUBE can provide researchers with a convenient tool to generate increasingly complex organoids and study their developmental processes in vitro.
Collapse
Affiliation(s)
- Isabel Koh
- Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan
| | - Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan.
| |
Collapse
|
11
|
Jeon EY, Sorrells L, Abaci HE. Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Front Bioeng Biotechnol 2022; 10:1038277. [PMID: 36466337 PMCID: PMC9712807 DOI: 10.3389/fbioe.2022.1038277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 09/27/2024] Open
Abstract
Organoids are self-organized and miniatured in vitro models of organs and recapitulate key aspects of organ architecture and function, leading to rapid progress in understanding tissue development and disease. However, current organoid culture systems lack accurate spatiotemporal control over biochemical and physical cues that occur during in vivo organogenesis and fail to recapitulate the complexity of organ development, causing the generation of immature organoids partially resembling tissues in vivo. Recent advances in biomaterials and microengineering technologies paved the way for better recapitulation of organ morphogenesis and the generation of anatomically-relevant organoids. For this, understanding the native ECM components and organization of a target organ is essential in providing rational design of extracellular scaffolds that support organoid growth and maturation similarly to the in vivo microenvironment. In this review, we focus on epithelial organoids that resemble the spatial distinct structure and function of organs lined with epithelial cells including intestine, skin, lung, liver, and kidney. We first discuss the ECM diversity and organization found in epithelial organs and provide an overview of developing hydrogel systems for epithelial organoid culture emphasizing their key parameters to determine cell fates. Finally, we review the recent advances in tissue engineering and microfabrication technologies including bioprinting and microfluidics to overcome the limitations of traditional organoid cultures. The integration of engineering methodologies with the organoid systems provides a novel approach for instructing organoid morphogenesis via precise spatiotemporal modulation of bioactive cues and the establishment of high-throughput screening platforms.
Collapse
Affiliation(s)
- Eun Young Jeon
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| | - Leila Sorrells
- Biomedical Engineering Department, Columbia University, New York, New York, United States
| | - Hasan Erbil Abaci
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Karp S, Pollak MR, Subramanian B. Disease Modeling with Kidney Organoids. MICROMACHINES 2022; 13:1384. [PMID: 36144007 PMCID: PMC9506184 DOI: 10.3390/mi13091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Kidney diseases often lack optimal treatments, causing millions of deaths each year. Thus, developing appropriate model systems to study human kidney disease is of utmost importance. Some of the most promising human kidney models are organoids or small organ-resembling tissue collectives, derived from human-induced pluripotent stem cells (hiPSCs). However, they are more akin to a first-trimester fetal kidney than an adult kidney. Therefore, new strategies are needed to advance their maturity. They have great potential for disease modeling and eventually auxiliary therapy if they can reach the maturity of an adult kidney. In this review, we will discuss the current state of kidney organoids in terms of their similarity to the human kidney and use as a disease modeling system thus far. We will then discuss potential pathways to advance the maturity of kidney organoids to match an adult kidney for more accurate human disease modeling.
Collapse
|
13
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
15
|
Atypical Teratoid Rhabdoid Tumours Are Susceptible to Panobinostat-Mediated Differentiation Therapy. Cancers (Basel) 2021; 13:cancers13205145. [PMID: 34680294 PMCID: PMC8534272 DOI: 10.3390/cancers13205145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Atypical teratoid rhabdoid tumour (ATRT) is an aggressive undifferentiated malignancy of the central nervous system in children. A defining feature of ATRT is the loss of the SMARCB1 gene that is essential for regulating gene expression required for normal developmental processes. We show that treatment of human ATRT cell models with the histone deacetylate inhibitor, panobinostat, inhibits tumour growth, reactivates the expression of developmental genes, and drives neuronal differentiation. These results demonstrate the therapeutic potential of panobinostat for the treatment of ATRT. Abstract Atypical teratoid rhabdoid tumour (ATRT) is a rare but highly aggressive undifferentiated solid tumour arising in the central nervous system and predominantly affecting infants and young children. ATRT is exclusively characterized by the inactivation of SMARCB1, a member of the SWI/SNF chromatin remodelling complex that is essential for the regulation of large sets of genes required for normal development and differentiation. Histone deacetylase inhibitors (HDACi) are a promising anticancer therapy and are able to mimic the normal acetylation functions of SMARCB1 in SMARCB1-deficient cells and drive multilineage differentiation in extracranial rhabdoid tumours. However, the potential efficacy of HDACi in ATRT is unknown. Here, we show that human ATRT cells are highly responsive to the HDACi panobinostat and that sustained treatment leads to growth arrest, increased cell senescence, decreased clonogenicity and induction of a neurogenesis gene-expression profile. Furthermore, in an orthotopic ATRT xenograft model, continuous panobinostat treatment inhibits tumour growth, increases survival and drives neuronal differentiation as shown by the expression of the neuronal marker, TUJ1. Collectively, this preclinical study supports the therapeutic potential of panobinostat-mediated differentiation therapy for ATRT.
Collapse
|
16
|
Wang YF, Liu C, Xu PF. Deciphering and reconstitution of positional information in the human brain development. ACTA ACUST UNITED AC 2021; 10:29. [PMID: 34467458 PMCID: PMC8408296 DOI: 10.1186/s13619-021-00091-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Organoid has become a novel in vitro model to research human development and relevant disorders in recent years. With many improvements on the culture protocols, current brain organoids could self-organize into a complicated three-dimensional organization that mimics most of the features of the real human brain at the molecular, cellular, and further physiological level. However, lacking positional information, an important characteristic conveyed by gradients of signaling molecules called morphogens, leads to the deficiency of spatiotemporally regulated cell arrangements and cell–cell interactions in the brain organoid development. In this review, we will overview the role of morphogen both in the vertebrate neural development in vivo as well as the brain organoid culture in vitro, the strategies to apply morphogen concentration gradients in the organoid system and future perspectives of the brain organoid technology.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Zhejiang University and University of Edinburgh, Jiaxing, Zhejiang, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Cong Liu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng-Fei Xu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:640212. [PMID: 34041235 PMCID: PMC8141848 DOI: 10.3389/fcell.2021.640212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raj Bose
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Soumyabrata Banerjee
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute, Ascension St. Mary's, Saginaw, MI, United States
| |
Collapse
|