1
|
Riyaz S, Sun Y, Helmholz H, Medina TP, Medina OP, Wiese B, Will O, Albaraghtheh T, Mohamad FH, Hövener JB, Glüer CC, Römer RW. Inflammatory response toward a Mg-based metallic biomaterial implanted in a rat femur fracture model. Acta Biomater 2024; 185:41-54. [PMID: 38969080 DOI: 10.1016/j.actbio.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The immune system plays an important role in fracture healing, by modulating the pro-inflammatory and anti-inflammatory responses occurring instantly upon injury. An imbalance in these responses can lead to adverse outcomes, such as non-union of fractures. Implants are used to support and stabilize complex fractures. Biodegradable metallic implants offer the potential to avoid a second surgery for implant removal, unlike non-degradable implants. However, considering our dynamic immune system it is important to conduct in-depth studies on the immune response to these implants in living systems. In this study, we investigated the immune response to Mg and Mg-10Gd in vivo in a rat femur fracture model with external fixation. In vivo imaging using liposomal formulations was used to monitor the fluorescence-related inflammation over time. We combine ex vivo methods with our in vivo study to evaluate and understand the systemic and local effects of the implants on the immune response. We observed no significant local or systemic effects in the Mg-10Gd implanted group compared to the SHAM and Mg implanted groups over time. Our findings suggest that Mg-10Gd is a more compatible implant material than Mg, with no adverse effects observed in the early phase of fracture healing during our 4-week study. STATEMENT OF SIGNIFICANCE: Degradable metallic implants in form of Mg and Mg-10Gd intramedullary pins were assessed in a rat femur fracture model, alongside a non-implanted SHAM group with special respect to the potential to induce an inflammatory response. This pre-clinical study combines innovative non-invasive in vivo imaging techniques associated with multimodal, ex vivo cellular and molecular analytics. The study contributes to the development and evaluation of degradable biometals and their clinical application potential. The study results indicate that Mg-10Gd did not exhibit any significant harmful effects compared to the SHAM and Mg groups.
Collapse
Affiliation(s)
- Sana Riyaz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Yu Sun
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Heike Helmholz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Tuula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany
| | - Oula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany; Lonza Netherlands B.V., 6167 RB Geleen, the Netherlands
| | - Björn Wiese
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tamadur Albaraghtheh
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany; Helmholtz-Zentrum hereon GmbH, Institute of Surface Science, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Farhad Haj Mohamad
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Claus Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Regine Willumeit Römer
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| |
Collapse
|
2
|
Ehnert S, Histing T. Advances in Fracture Healing Research. Bioengineering (Basel) 2024; 11:67. [PMID: 38247944 PMCID: PMC10813380 DOI: 10.3390/bioengineering11010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Despite a constant refinement of surgical techniques and bone fixation methods, up to 15% of fractures result in impaired healing or even develop a non-union [...].
Collapse
Affiliation(s)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard-Karls-University Tuebingen, BG Unfallklinik, 72076 Tuebingen, Germany;
| |
Collapse
|
3
|
Etschmaier V, Glänzer D, Eck N, Schäfer U, Leithner A, Georg D, Lohberger B. Proton and Carbon Ion Irradiation Changes the Process of Endochondral Ossification in an Ex Vivo Femur Organotypic Culture Model. Cells 2023; 12:2301. [PMID: 37759523 PMCID: PMC10527791 DOI: 10.3390/cells12182301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Particle therapy (PT) that utilizes protons and carbon ions offers a promising way to reduce the side effects of radiation oncology, especially in pediatric patients. To investigate the influence of PT on growing bone, we exposed an organotypic rat ex vivo femur culture model to PT. After irradiation, histological staining, immunohistochemical staining, and gene expression analysis were conducted following 1 or 14 days of in vitro culture (DIV). Our data indicated a significant loss of proliferating chondrocytes at 1 DIV, which was followed by regeneration attempts through chondrocytic cluster formation at 14 DIV. Accelerated levels of mineralization were observed, which correlated with increased proteoglycan production and secretion into the pericellular matrix. Col2α1 expression, which increased during the cultivation period, was significantly inhibited by PT. Additionally, the decrease in ColX expression over time was more pronounced compared to the non-IR control. The chondrogenic markers BMP2, RUNX2, OPG, and the osteogenic marker ALPL, showed a significant reduction in the increase in expression after 14 DIV due to PT treatment. It was noted that carbon ions had a stronger influence than protons. Our bone model demonstrated the occurrence of pathological and regenerative processes induced by PT, thus building on the current understanding of the biological mechanisms of bone.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Dietmar Glänzer
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Ute Schäfer
- Department of Neurosurgery, Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria;
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| |
Collapse
|