1
|
Atalay-Sahar E, Yildiz-Ozturk E, Ozgur S, Aral A, Dayanc E, Goksel T, Meuwissen R, Yesil-Celiktas O, Goksel O. Novel Approach Methodologies in Modeling Complex Bioaerosol Exposure in Asthma and Allergic Rhinitis Under Climate Change. Expert Rev Mol Med 2025; 27:e13. [PMID: 40070355 PMCID: PMC11964095 DOI: 10.1017/erm.2025.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/28/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
The undeniable impact of climate change and air pollution on respiratory health has led to increasing cases of asthma, allergic rhinitis and other chronic non-communicable immune-mediated upper and lower airway diseases. Natural bioaerosols, such as pollen and fungi, are essential atmospheric components undergoing significant structural and functional changes due to industrial pollution and atmospheric warming. Pollutants like particulate matter(PMx), polycyclic aromatic hydrocarbons(PAHs), nitrogen dioxide(NO2), sulfur dioxide(SO2) and carbon monoxide(CO) modify the surface and biological properties of atmospheric bioaerosols such as pollen and fungi, enhancing their allergenic potentials. As a result, sensitized individuals face heightened risks of asthma exacerbation, and these alterations likely contribute to the rise in frequency and severity of allergic diseases. NAMs, such as precision-cut lung slices(PCLS), air-liquid interface(ALI) cultures and lung-on-a-chip models, along with the integration of data from these innovative models with computational models, provide better insights into how environmental factors influence asthma and allergic diseases compared to traditional models. These systems simulate the interaction between pollutants and the respiratory system with higher precision, helping to better understand the health implications of bioaerosol exposure. Additionally, NAMs improve preclinical study outcomes by offering higher throughput, reduced costs and greater reproducibility, enhancing the translation of data into clinical applications. This review critically evaluates the potential of NAMs in researching airway diseases, with a focus on allergy and asthma. It highlights their advantages in studying the increasingly complex structures of bioaerosols under conditions of environmental pollution and climate change, while also addressing the existing gaps, challenges and limitations of these models.
Collapse
Affiliation(s)
- Esra Atalay-Sahar
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
| | - Ece Yildiz-Ozturk
- Department of Food Processing, Food Technology Programme, Yasar University, Izmir, Türkiye
| | - Su Ozgur
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Regional Hub for Cancer Registration in Northern Africa, Central and Western Asia, WHO/IARC GICR, Izmir, Türkiye
| | - Arzu Aral
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Emre Dayanc
- Basic Medical Sciences, Faculty of Medicine, İzmir University of Economics, Izmir, Türkiye
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Ralph Meuwissen
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
| | - Ozlem Yesil-Celiktas
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
- ODTÜ MEMS Center[CMT2], Ankara, Türkiye
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Türkiye
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Faculty of Medicine, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Kollareth DJM, Sharma AK. Precision cut lung slices: an innovative tool for lung transplant research. Front Immunol 2024; 15:1504421. [PMID: 39669559 PMCID: PMC11634892 DOI: 10.3389/fimmu.2024.1504421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Lung ischemia-reperfusion injury (IRI), a common complication after lung transplantation (LTx), plays a crucial role in both primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) thereby adversely impacting the clinical outcomes in these patient cohorts. Lung IRI is characterized by several molecular events including immune cell infiltration, reactive oxygen species (ROS) generation, calcium overload, inflammation and various forms of cell death pathways. Currently, no therapeutic agents are available to clinically prevent lung IRI. While animal and cell culture models are highly valuable in understanding the pathophysiology of lung IRI, they may not completely recapitulate the complexity of human lung tissue pathology. This limitation necessitates the requirement for developing innovative preclinical human research tools that can supplement available scientific modalities. Emerging evidence suggests that precision-cut lung slices (PCLS) have become an indispensable tool in scientific research to study lung biology in an ex vivo tissue system. Recent studies using PCLS have investigated lung diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Although PCLS can be successfully employed to determine the deleterious events in the pathogenesis of lung IRI, including cell-cell interactions as well as hallmarks of inflammation and oxidative stress-dependent pathways, detailed studies employing PCLS to decipher these molecular events in post-LTx injury are currently limited. This review focuses on the applicability and unexplored potential of PCLS as a powerful tool in lung IRI research for understanding the pathophysiology and consequent development of new therapeutic modalities.
Collapse
Affiliation(s)
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Tan W, Qi L, Tan Z. Animal models of infection-induced acute lung injury. Exp Lung Res 2024; 50:221-241. [PMID: 39558475 DOI: 10.1080/01902148.2024.2428939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Aim: Acute lung injury (ALI) is characterized by severe hypoxemia, reduced lung elasticity, and notable pulmonary edema, often caused by infections and potentially progressing to ARDS. This article explores animal models of ALI and clarifies its main pathogenic mechanisms. Materials and Methods: we reviewed 20 years of ALI animal model advancements via PubMed, assessing clinical symptoms, histopathology, and reproducibility, and provided guidance on selecting models aligned with ALI pathogenesis. Results: key proinflammatory mediators and interleukins play a significant role in ALI development, though their interactions are not fully understood. Preclinical models are essential for investigating ALI causes and testing treatments. Animal models mimic ALI from sources such as infections, drugs, and I/R events, but differences between mouse and human lungs necessitate careful validation of these findings. Conclusions: A comprehensive strategy is essential to address clinical treatment and drug R&D challenges to prevent severe complications and reduce mortality rates.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingjun Qi
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhenghuai Tan
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, China
| |
Collapse
|
4
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
5
|
Goksel O, Sipahi MI, Yanasik S, Saglam-Metiner P, Benzer S, Sabour-Takanlou L, Sabour-Takanlou M, Biray-Avci C, Yesil-Celiktas O. Comprehensive analysis of resilience of human airway epithelial barrier against short-term PM2.5 inorganic dust exposure using in vitro microfluidic chip and ex vivo human airway models. Allergy 2024; 79:2953-2965. [PMID: 38868934 DOI: 10.1111/all.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND OBJECTIVE The updated World Health Organization (WHO) air quality guideline recommends an annual mean concentration of fine particulate matter (PM2.5) not exceeding 5 or 15 μg/m3 in the short-term (24 h) for no more than 3-4 days annually. However, more than 90% of the global population is currently exposed to daily concentrations surpassing these limits, especially during extreme weather conditions and due to transboundary dust transport influenced by climate change. Herein, the effect of respirable METHODS Silica particles at an average size of 1 μm, referred to as RESULTS In the AEB-on-a-chip platform, short-term exposure to 800 μg/mL PM2.5 disrupted AEB integrity via increasing barrier permeability, decreasing cell adhesion-barrier markers such as ZO-1, Vinculin, ACE2, and CD31, impaired cell viability and increased the expression levels of proinflammatory markers; IFNs, IL-6, IL-1s, TNF-α, CD68, CD80, and Inos, mostly under dynamic conditions. Besides, decreased tissue viability, impaired tissue integrity via decreasing of Vinculin, ACE2, β-catenin, and E-cadherin, and also proinflammatory response with elevated CD68, IL-1α, IL-6, IFN-Ɣ, Inos, and CD80 markers, were observed after PM2.5 exposure in ex vivo tissue. CONCLUSION The duration and concentration of PM2.5 that can be exposed during extreme weather conditions and natural events aligns with our exposure model (0-800 μg/mL 72 h). At this level of exposure, the resilience of the epithelial barrier is demonstrated by both AEB-on-a-chip platform emulating dynamic forces in the body and ex vivo bronchial biopsy slices. Lung-on-a-chip models will serve as reliable exposure models in this context.
Collapse
Affiliation(s)
- Ozlem Goksel
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Laboratory of Occupational & Environmental Respiratory Diseases and Asthma, Faculty of Medicine, Ege University, Izmir, Turkey
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| | - Meryem Irem Sipahi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Sema Benzer
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
6
|
Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A, Cicek C, Goksel O, Goksel T, Tezcanli B, Yesil-Celiktas O. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 2024; 87:102319. [PMID: 38359705 DOI: 10.1016/j.tice.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Food Processing, Food Technology Programme, Yasar University, 35100 Izmir, Turkey
| | - Aslı Tetik-Vardarli
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey.
| |
Collapse
|
7
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
van Linge CCA, Hulme KD, Peters-Sengers H, Sirard JC, Goessens WHF, de Jong MD, Russell CA, de Vos AF, van der Poll T. Immunostimulatory Effect of Flagellin on MDR- Klebsiella-Infected Human Airway Epithelial Cells. Int J Mol Sci 2023; 25:309. [PMID: 38203480 PMCID: PMC10778885 DOI: 10.3390/ijms25010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.
Collapse
Affiliation(s)
- Christine C. A. van Linge
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Katina D. Hulme
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, CNRS UMR9017, CHU Lille, University Lille, 59000 Lille, France
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
- Department of Global Health, School of Public Health, Boston University, Boston, MA 02215, USA
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| |
Collapse
|
9
|
Lam M, Lamanna E, Organ L, Donovan C, Bourke JE. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol 2023; 14:1162889. [PMID: 37261291 PMCID: PMC10228656 DOI: 10.3389/fphar.2023.1162889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institut Pasteur, Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Paris, France
| | - Louise Organ
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
10
|
Agraval H, Crue T, Schaunaman N, Numata M, Day BJ, Chu HW. Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24054295. [PMID: 36901724 PMCID: PMC10002047 DOI: 10.3390/ijms24054295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Taylor Crue
- School of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Correspondence: ; Tel.: +1-303-398-1689
| |
Collapse
|